The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187130 McKay-Thompson series of class 12I for the Monster group with a(0) = -3. 3
 1, -3, 2, 0, 1, 0, 0, 0, -2, 0, -2, 0, 2, 0, 4, 0, 3, 0, -4, 0, -8, 0, -4, 0, 5, 0, 14, 0, 7, 0, -8, 0, -20, 0, -12, 0, 14, 0, 28, 0, 17, 0, -20, 0, -44, 0, -24, 0, 28, 0, 66, 0, 36, 0, -40, 0, -90, 0, -52, 0, 56, 0, 124, 0, 71, 0, -80, 0, -176, 0, -96, 0, 109 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (1/q) * (psi(-q) * phi(-q)) / (psi(-q^3) * psi(q^6)) in powers of q where phi(), psi() are Ramanujan theta functions. Expansion of eta(q)^3 * eta(q^4) * eta(q^6)^2 / (eta(q^2)^2 * eta(q^3) * eta(q^12)^3) in powers of q. Euler transform of period 12 sequence [ -3, -1, -2, -2, -3, -2, -3, -2, -2, -1, -3, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187100. Convolution inverse of A187100. EXAMPLE G.f. = 1/q - 3 + 2*q + q^3 - 2*q^7 - 2*q^9 + 2*q^11 + 4*q^13 + 3*q^15 - 4*q^17 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 4, 0, q] EllipticTheta[ 2, Pi/4, q^(1/2)] / (EllipticTheta[ 2, Pi/4, q^(3/2)] EllipticTheta[ 2, 0, q^3]), {q, 0, n}] // Simplify; (* Michael Somos, Apr 24 2015 *) PROG (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^3), n))}; CROSSREFS Cf. A058487, A187100. Sequence in context: A059033 A133209 A144553 * A187145 A285700 A290693 Adjacent sequences:  A187127 A187128 A187129 * A187131 A187132 A187133 KEYWORD sign AUTHOR Michael Somos, Mar 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 02:18 EST 2020. Contains 338921 sequences. (Running on oeis4.)