OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 5 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 21 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(12). [Yang 2004] - Michael Somos, Jul 21 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000 (terms 0..502 from G. A. Edgar)
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
Expansion of (psi(x) / psi(x^3))^2 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 21 2014
G.f.: ( Product_{k>0} (1 - x^(6*k - 2)) * (1 - x^(6*k - 4)) / ((1 - x^(6*k - 1)) * (1 - x^(6*k - 5))) )^2.
Expansion of q^(1/2) * (eta(q^2)^4 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)^4)) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 0, -2, 2, 0,...]. - Michael Somos, Mar 18 2004
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 + 3*v - u^2*v + v^2. - Michael Somos, Mar 18 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A186924.
a(n) = (-1)^n * A062243(n).
EXAMPLE
G.f. = 1 + 2*x + x^2 - 2*x^4 - 2*x^5 + 2*x^6 + 4*x^7 + 3*x^8 - 4*x^9 - 8*x^10 + ...
T12I = 1/q + 2*q + 1*q^3 - 2*q^7 - 2*q^9 + 2*q^11 + 4*q^13 + 3*q^15 - 4*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / EllipticTheta[ 2, 0, q^3]^2, {q, 0, 2 n - 1}]; (* Michael Somos, Jul 21 2014 *)
QP = QPochhammer; s = QP[q^2]^4*(QP[q^3]^2/(QP[q]^2*QP[q^6]^4)) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
PROG
(PARI) {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A * (A + 3*x) / (A - x))); polcoeff(A, n))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2))^2, n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved