login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128633
McKay-Thompson series of class 6E for the Monster group with a(0) = 4.
8
1, 4, 6, 4, -3, -12, -8, 12, 30, 20, -30, -72, -46, 60, 156, 96, -117, -300, -188, 228, 552, 344, -420, -1008, -603, 732, 1770, 1048, -1245, -2976, -1776, 2088, 4908, 2900, -3420, -7992, -4658, 5460, 12756, 7408, -8583, -19944, -11564, 13344, 30756, 17744
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
FORMULA
Expansion of 3 * (b(q^2)^2 / b(q)) / (c(q^2)^2 / c(q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^-1 * (psi(q) / psi(q^3))^4 in powers of q where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)^2))^4 in powers of q.
Euler transform of period 6 sequence [ 4, -4, 0, -4, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (u - 9) * (u - 1) - (u - v)^2.
G.f.: (1/x) * (Product_{k>0} (1 + x^k + x^(2*k)) * (1 - x^k + x^(2*k))^2)^-4.
a(n) = A007258(n) = A105559(n) = A128632(n) unless n = 0.
EXAMPLE
G.f. = 1/q + 4 + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(3/2)])^4, {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
QP = QPochhammer; s = (QP[q^2]^2*(QP[q^3]/(QP[q]*QP[q^6]^2)))^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2))^4, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 15 2007
STATUS
approved