OFFSET
-1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 3 * (b(q^2)^2 / b(q)) / (c(q^2)^2 / c(q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^-1 * (psi(q) / psi(q^3))^4 in powers of q where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)^2))^4 in powers of q.
Euler transform of period 6 sequence [ 4, -4, 0, -4, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (u - 9) * (u - 1) - (u - v)^2.
G.f.: (1/x) * (Product_{k>0} (1 + x^k + x^(2*k)) * (1 - x^k + x^(2*k))^2)^-4.
EXAMPLE
G.f. = 1/q + 4 + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(3/2)])^4, {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
QP = QPochhammer; s = (QP[q^2]^2*(QP[q^3]/(QP[q]*QP[q^6]^2)))^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2))^4, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 15 2007
STATUS
approved