OFFSET
4,2
REFERENCES
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 4..10000
H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..73); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax = 73; CoefficientList[Series[(Product[(1 - (-x)^j), {j, 1, nmax}] - 1)^4, {x, 0, nmax}], x] // Drop[#, 4] & (* Ilya Gutkovskiy, Feb 07 2021 *)
Drop[CoefficientList[Series[(1 -QPochhammer[-x])^4, {x, 0, 100}], x], 4] (* G. C. Greubel, Sep 04 2023 *)
PROG
(Magma)
m:=102;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( (1 - (&*[1-(-x)^j: j in [1..m+2]]))^4 )); // G. C. Greubel, Sep 04 2023
(SageMath)
m=100
def f4(x): return (1 - product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1, m+2) ) )^4
def A001482_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f4(x) ).list()
a=A001482_list(m); a[4:] # G. C. Greubel, Sep 04 2023
(PARI) my(N=70, x='x+O('x^N)); Vec((eta(-x)-1)^4) \\ Joerg Arndt, Sep 04 2023
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021
STATUS
approved