The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001482 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^4 in powers of x. (Formerly M3263 N1317) 26
 1, -4, 6, -4, -3, 12, -16, 16, -6, -8, 18, -28, 26, -20, 2, 12, -23, 32, -36, 28, -6, 4, 22, -20, 39, -32, 32, -12, 2, 16, -12, 24, -40, 28, -34, 0, -6, -16, 0, -40, 6, -36, 26, -32, -5, 0, -20, 8, -16, 12, -10, 40, -22, 12, 14, 12, 45, 16, 38, 4, 12, 0, 34, 8, 38, 12, -24, 44, 2, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 REFERENCES H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 4..10000 H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy) MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]       [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)     end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),       (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))     end: a:= n-> b(n, 4): seq(a(n), n=4..73);  # Alois P. Heinz, Feb 07 2021 MATHEMATICA nmax = 73; CoefficientList[Series[(Product[(1 - (-x)^j), {j, 1, nmax}] - 1)^4, {x, 0, nmax}], x] // Drop[#, 4] & (* Ilya Gutkovskiy, Feb 07 2021 *) CROSSREFS Sequence in context: A199721 A187147 A128633 * A198493 A161965 A256419 Adjacent sequences:  A001479 A001480 A001481 * A001483 A001484 A001485 KEYWORD sign AUTHOR EXTENSIONS Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 02:21 EDT 2021. Contains 343909 sequences. (Running on oeis4.)