The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047655 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^3 in powers of x. 5
 1, -3, 3, -1, -3, 6, -6, 6, 0, -3, 6, -9, 8, -6, 0, 0, -6, 6, -13, 3, -6, 3, 0, -3, 6, -9, 6, -3, 6, 0, 6, 6, -3, 11, 0, 6, 0, 9, 0, 0, 0, -3, 13, 0, 0, -6, 0, -6, 3, -3, -6, 0, -15, -6, -3, 0, -6, 0, -6, 0, -6, -6, 0, -11, 0, 0, -6, 0, 6, 0, 6, 0, 0, 0, -3, 19, 12, -3, 0, 0, 6, 6, 6, 6, 0, 0, 6, 0, 21, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 3..10000 H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy) H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440. MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]       [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)     end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),       (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))     end: a:= n-> b(n, 3): seq(a(n), n=3..92);  # Alois P. Heinz, Feb 07 2021 MATHEMATICA nmax = 92; CoefficientList[Series[(Product[(1 - (-x)^j), {j, 1, nmax}] - 1)^3, {x, 0, nmax}], x] // Drop[#, 3] & (* Ilya Gutkovskiy, Feb 07 2021 *) CROSSREFS Sequence in context: A245668 A002102 A332552 * A078685 A078882 A262220 Adjacent sequences:  A047652 A047653 A047654 * A047656 A047657 A047658 KEYWORD sign AUTHOR EXTENSIONS Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 13:42 EDT 2021. Contains 343742 sequences. (Running on oeis4.)