login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245668
Expansion of (chi(q^3) * psi(-q))^3 in powers of q where chi(), psi() are Ramanujan theta functions.
2
1, -3, 3, -1, -3, 6, -3, 0, 3, 3, -12, 6, -1, -12, 12, 0, -3, 12, 9, -12, 6, -6, -12, 0, -3, -15, 18, 5, 0, 18, -6, 0, 3, -6, -24, 12, 3, -12, 18, 0, -12, 24, -6, -12, 6, 18, -24, 0, -1, -27, 21, -6, -12, 18, 15, 0, 12, -6, -12, 18, 0, -36, 24, 0, -3, 24, -12
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q^3) * psi(-q)^3 / psi(-q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)))^3 in powers of q.
Euler transform of period 12 sequence [-3, 0, 0, -3, -3, -3, -3, -3, 0, 0, -3, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6^(3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A245669.
a(3*n + 1) = -3 * A213056(n). a(6*n + 2) = 3 * A213592(n). a(6*n + 5) = 6 * A213607(n). a(8*n + 7) = 0.
Convolution cube of A089807.
EXAMPLE
G.f. = 1 - 3*q + 3*q^2 - q^3 - 3*q^4 + 6*q^5 - 3*q^6 + 3*q^8 + 3*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[3, Pi/3, q]^3, {q, 0, n}];
a[ n_] := SeriesCoefficient[ ((3 EllipticTheta[3, 0, q^9] - EllipticTheta[3, 0, q]) / 2)^3, {q, 0, n}];
a[ n_] := SeriesCoefficient[ (QPochhammer[-q^3, q^6] EllipticTheta[2, 0, Sqrt[-q]] / (2 (-q)^(1/8)))^3, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)))^3, n))};
(Magma) A := Basis( ModularForms( Gamma0(12), 3/2), 67); A[1] - 3*A[2] + 3*A[3];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 28 2014
STATUS
approved