login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213056
Expansion of chi(x) * f(x^3)^3 in powers of x where chi(), f() are Ramanujan theta functions.
3
1, 1, 0, 4, 4, 1, 4, 4, 5, 0, 0, 8, 4, 4, 4, 8, 9, 4, 0, 4, 12, 1, 4, 8, 8, 4, 0, 8, 8, 4, 8, 16, 8, 5, 0, 12, 12, 0, 8, 12, 13, 0, 0, 8, 8, 8, 12, 8, 16, 4, 0, 16, 12, 4, 4, 20, 13, 4, 0, 16, 20, 8, 8, 8, 8, 9, 0, 12, 16, 4, 12, 12, 16, 0, 0, 16, 20, 4, 8
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^6)^9 / (eta(q) * eta(q^3)^3 * eta(q^4) * eta(q^12)^3) in powers of q.
Expansion of q^(-1/9) times theta series of cubic lattice with respect to point [0, 0, 1/3] in powers of q^(1/3).
Euler transform of period 12 sequence [ 1, -1, 4, 0, 1, -7, 1, 0, 4, -1, 1, -3, ...].
G.f.: Product_{k>0} (1 - (-x)^(3*k))^3 * (1 + x^(2*k-1)).
a(4*n + 1) = a(n). a(8*n + 2) = 0.
EXAMPLE
G.f. = 1 + x + 4*x^3 + 4*x^4 + x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 8*x^11 + 4*x^12 + ...
G.f. = q + q^4 + 4*q^10 + 4*q^13 + q^16 + 4*q^19 + 4*q^22 + 5*q^25 + 8*q^34 + ...
MATHEMATICA
CoefficientList[QPochhammer[q^2]^2*QPochhammer[-q^3]^3 / (QPochhammer[q] * QPochhammer[q^4]) + O[q]^80, q] (* Jean-François Alcover, Nov 05 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)* eta[q^2]^2*eta[q^6]^9/(eta[q]*eta[q^3]^3*eta[q^4]*eta[q^12]^3), {q, 0, 50}], q] (* G. C. Greubel, Aug 12 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^9 / (eta(x + A) * eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A)^3) , n))}
CROSSREFS
Sequence in context: A087709 A106642 A327855 * A135012 A156380 A329708
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2012
STATUS
approved