OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^6)^9 / (eta(q) * eta(q^3)^3 * eta(q^4) * eta(q^12)^3) in powers of q.
Expansion of q^(-1/9) times theta series of cubic lattice with respect to point [0, 0, 1/3] in powers of q^(1/3).
Euler transform of period 12 sequence [ 1, -1, 4, 0, 1, -7, 1, 0, 4, -1, 1, -3, ...].
G.f.: Product_{k>0} (1 - (-x)^(3*k))^3 * (1 + x^(2*k-1)).
a(4*n + 1) = a(n). a(8*n + 2) = 0.
EXAMPLE
G.f. = 1 + x + 4*x^3 + 4*x^4 + x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 8*x^11 + 4*x^12 + ...
G.f. = q + q^4 + 4*q^10 + 4*q^13 + q^16 + 4*q^19 + 4*q^22 + 5*q^25 + 8*q^34 + ...
MATHEMATICA
CoefficientList[QPochhammer[q^2]^2*QPochhammer[-q^3]^3 / (QPochhammer[q] * QPochhammer[q^4]) + O[q]^80, q] (* Jean-François Alcover, Nov 05 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)* eta[q^2]^2*eta[q^6]^9/(eta[q]*eta[q^3]^3*eta[q^4]*eta[q^12]^3), {q, 0, 50}], q] (* G. C. Greubel, Aug 12 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^9 / (eta(x + A) * eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A)^3) , n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2012
STATUS
approved