login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213058
E.g.f. A(x) satisfies: 1-x = Sum_{n>=0} Laplace(A(x)^n) * (-x)^n.
3
1, 1, 1, 2, 4, 12, 38, 150, 648, 3218, 17476, 105150, 686012, 4858602, 36966912, 301473146, 2619548392, 24181633098, 236214717380, 2435055354798, 26413257186156, 300761256373298, 3586799346195376, 44710179730250874, 581430401788576664, 7874808892125746226
OFFSET
0,4
COMMENTS
Here Laplace( Sum_{n>=0} c(n)*x^n/n! ) = Sum_{n>=0} c(n)*x^n.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..220 (terms 0..100 from Paul D. Hanna)
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 4*x^4/4! + 12*x^5/5! + 38*x^6/6! +...
The table of coefficients in the Laplace transform of A(x)^n begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 1, 1, 2, 4, 12, 38, 150, 648, ...];
n=2: [1, 2, 4, 10, 30, 104, 420, 1896, 9632, ...];
n=3: [1, 3, 9, 30, 114, 486, 2316, 12210, 70632, ...];
n=4: [1, 4, 16, 68, 316, 1608, 8936, 54024, 353496, ...];
n=5: [1, 5, 25, 130, 720, 4280, 27330, 187230, 1372640, ...];
n=6: [1, 6, 36, 222, 1434, 9792, 70908, 544800, 4437288, ...];
n=7: [1, 7, 49, 350, 2590, 20034, 162680, 1389066, 12474672, ...];
n=8: [1, 8, 64, 520, 4344, 37616, 339216, 3193200, 31407632, ...];
n=9: [1, 9, 81, 738, 6876, 65988, 655326, 6752934, 72308376, ...]; ...
such that the alternating sums of antidiagonals vanish for n>1:
1 - 1 = 0;
1 - 2 + 1 = 0;
2 - 4 + 3 - 1 = 0;
4 - 10 + 9 - 4 + 1 = 0;
12 - 30 + 30 - 16 + 5 - 1 = 0;
38 - 104 + 114 - 68 + 25 - 6 + 1 = 0; ...
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=Vec(sum(m=1, #A, serlaplace(serconvol(Ser(A), exp(x+O(x^#A)))^m)*(-x)^m))[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A204190.
Sequence in context: A149846 A341240 A108532 * A268069 A215071 A180487
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2012
STATUS
approved