login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327855
Irregular triangle read by rows: T(n,k) = [x^k] (Sum_{i=0..prime(n)-1} (1+Legendre(i,prime(n))) * x^i)^2, for 0 <= k <= 2*prime(n)-2.
0
1, 4, 4, 1, 4, 4, 0, 0, 1, 4, 4, 0, 4, 8, 0, 0, 4, 1, 4, 8, 8, 8, 8, 8, 0, 4, 0, 0, 0, 0, 1, 4, 4, 4, 12, 12, 12, 8, 12, 12, 12, 0, 8, 8, 8, 0, 0, 0, 4, 0, 0, 1, 4, 4, 4, 12, 8, 4, 8, 4, 4, 12, 8, 12, 24, 8, 8, 8, 0, 4, 8, 4, 8, 8, 0, 4
OFFSET
1,2
FORMULA
For n > 1, Sum_{k=0..2*prime(n)-2} T(n,k)*x^k == (-1)^((p - 1)/2) * p mod ((x^p - 1)/(x - 1)) where p is n-th prime.
EXAMPLE
Triangle begins
[1, 4, 4],
[1, 4, 4, 0, 0],
[1, 4, 4, 0, 4, 8, 0, 0, 4],
[1, 4, 8, 8, 8, 8, 8, 0, 4, 0, 0, 0, 0],
[1, 4, 4, 4, 12, 12, 12, 8, 12, 12, 12, 0, 8, 8, 8, 0, 0, 0, 4, 0, 0],
[1, 4, 4, 4, 12, 8, 4, 8, 4, 4, 12, 8, 12, 24, 8, 8, 8, 0, 4, 8, 4, 8, 8, 0, 4],
...
------------------------------------------
1 + 4*x + 4*x^2 = 4*(x^3 - 1)/(x - 1) - 3.
1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 = 4 * (x^4 - x^3 + 2*x - 1)*(x^5 - 1)/(x - 1) + 5.
1 + 4*x + 8*x^2 + 8*x^3 + 8*x^4 + 8*x^5 + 8*x^6 + 4*x^8 = 4 * (x^2 - x + 2)*(x^7 - 1)/(x - 1) - 7.
PROG
(PARI) forprime(p=2, 30, print(Vecrev((sum(k=0, p-1, (1+kronecker(k, p))*x^k))^2, 2*p-1), ", "))
CROSSREFS
Sequence in context: A030788 A087709 A106642 * A213056 A135012 A156380
KEYWORD
nonn,tabf
AUTHOR
Seiichi Manyama, Sep 28 2019
STATUS
approved