login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226520
Irregular triangle read by rows: T(n,k) = Legendre(k,prime(n)), for 0 <= k < prime(n).
7
0, 1, 0, 1, -1, 0, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, 0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1
OFFSET
1
COMMENTS
Strictly speaking, the symbol in the definition is the Legendre-Jacobi-Kronecker symbol, since the Legendre symbol is defined only for odd primes.
REFERENCES
R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 289.
József Beck, Inevitable randomness in discrete mathematics, University Lecture Series, 49. American Mathematical Society, Providence, RI, 2009. xii+250 pp. ISBN: 978-0-8218-4756-5; MR2543141 (2010m:60026). See page 23.
H. Cohen, A Course in Computational Alg. No. Theory, Springer, 1993, p. 28.
LINKS
D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4, 1957, 106--112. MR0093504 (20 #28)
Wikipedia, Legendre symbol.
FORMULA
See A226518 for bounds.
EXAMPLE
Triangle begins
0, 1;
0, 1, -1;
0, 1, -1, -1, 1;
0, 1, 1, -1, 1, -1, -1;
0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1;
0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1;
0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1;
...
MAPLE
with(numtheory);
T:=(n, k)->legendre(k, ithprime(n));
f:=n->[seq(T(n, k), k=0..ithprime(n)-1)];
[seq(f(n), n=1..15)];
MATHEMATICA
Table[p = Prime[n]; Table[JacobiSymbol[k, p], {k, 0, p-1}], {n, 15}]//Flatten (* Jean-François Alcover, Mar 07 2014 *)
PROG
(Haskell)
a226520 n k = a226520_tabf !! (n-1) !! k
a226520_row n = a226520_tabf !! (n-1)
a226520_tabf =
map (\p -> map (flip legendreSymbol p) [0..p-1]) a000040_list
-- where the function legendreSymbol is defined in A097343.
-- Reinhard Zumkeller, Feb 02 2014
(Magma)
A226520:= func< n, k | n eq 1 select k else JacobiSymbol(k, NthPrime(n)) >;
[A226520(n, k) : k in [0..NthPrime(n)-1], n in [1..12]]; // G. C. Greubel, Oct 05 2024
(SageMath)
def A226520(n, k): return k if n==1 else jacobi_symbol(k, nth_prime(n))
flatten([[A226520(n, k) for k in range(nth_prime(n))] for n in range(1, 12)]) # G. C. Greubel, Oct 05 2024
CROSSREFS
Row sums give A226518.
See A097343 for another version.
Sequence in context: A157412 A373223 A023532 * A268921 A327180 A030308
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Jun 19 2013
STATUS
approved