The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157412 Triangular read by rows: T(n,m) = J(prime(n),prime(m)) where J is the Jacobi symbol. Each row starts with prime(2) = 3. 1
 0, -1, 0, 1, -1, 0, -1, 1, 1, 0, 1, -1, -1, -1, 0, -1, -1, -1, -1, 1, 0, 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, 1, 1, -1, 1, 0, -1, 1, 1, -1, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Row sums are {0, -1, 0, 1, -2, -3, 0, 1, 0, -1,...} LINKS EXAMPLE 0; -1, 0; 1, -1, 0; -1, 1, 1, 0; 1, -1, -1, -1, 0; -1, -1, -1, -1, 1, 0; 1, 1, -1, -1, -1, 1, 0; -1, -1, 1, 1, 1, -1, 1, 0; -1, 1, 1, -1, 1, -1, -1, 1, 0; 1, 1, -1, 1, -1, -1, -1, 1, -1, 0; MAPLE for n from 2 to 11 do for m from 2 to n do printf("%d, ", numtheory[jacobi](ithprime(n), ithprime(m))) ; od: od: MATHEMATICA Flatten[Table[JacobiSymbol[Prime[n], Prime[m]], {n, 2, 11}, {m, 2, n}]](* Zak Seidov, Mar 29 2011 *) PROG (PARI) forprime(p=3, 19, forprime(q=3, p, print1(kronecker(p, q)", "))) \\ Charles R Greathouse IV, Oct 31 2011 CROSSREFS Cf. A110242. Sequence in context: A123640 A022924 A295893 * A023532 A226520 A268921 Adjacent sequences:  A157409 A157410 A157411 * A157413 A157414 A157415 KEYWORD tabl,sign,easy AUTHOR Roger L. Bagula, Feb 28 2009 EXTENSIONS Edited by the Associate Editors of the OEIS, Apr 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:45 EDT 2020. Contains 334756 sequences. (Running on oeis4.)