%I #11 May 13 2013 01:49:06
%S 0,-1,0,1,-1,0,-1,1,1,0,1,-1,-1,-1,0,-1,-1,-1,-1,1,0,1,1,-1,-1,-1,1,0,
%T -1,-1,1,1,1,-1,1,0,-1,1,1,-1,1,-1,-1,1,0,1,1,-1,1,-1,-1,-1,1,-1,0
%N Triangular read by rows: T(n,m) = J(prime(n),prime(m)) where J is the Jacobi symbol. Each row starts with prime(2) = 3.
%C Row sums are {0, -1, 0, 1, -2, -3, 0, 1, 0, -1,...}
%e 0;
%e -1, 0;
%e 1, -1, 0;
%e -1, 1, 1, 0;
%e 1, -1, -1, -1, 0;
%e -1, -1, -1, -1, 1, 0;
%e 1, 1, -1, -1, -1, 1, 0;
%e -1, -1, 1, 1, 1, -1, 1, 0;
%e -1, 1, 1, -1, 1, -1, -1, 1, 0;
%e 1, 1, -1, 1, -1, -1, -1, 1, -1, 0;
%p for n from 2 to 11 do for m from 2 to n do printf("%d,",numtheory[jacobi](ithprime(n),ithprime(m))) ; od: od:
%t Flatten[Table[JacobiSymbol[Prime[n],Prime[m]],{n,2,11},{m,2,n}]](* Zak Seidov, Mar 29 2011 *)
%o (PARI) forprime(p=3,19,forprime(q=3,p,print1(kronecker(p,q)", "))) \\ _Charles R Greathouse IV_, Oct 31 2011
%Y Cf. A110242.
%K tabl,sign,easy
%O 2,1
%A _Roger L. Bagula_, Feb 28 2009
%E Edited by the Associate Editors of the OEIS, Apr 22 2009