The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268921 Irregular triangle with the Legendre symbol (-m / prime(n)) for m = 0,1, ..., prime(n)-1, for n >= 1. Caution for row n = 1. 0
 0, 1, 0, -1, 1, 0, 1, -1, -1, 1, 0, -1, -1, 1, -1, 1, 1, 0, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Row n has length prime(n) = A000040(n). If GCD(-m, prime(n)) is not 1 then the Legendre and Jacobi symbols are put to 0. Therefore T(0, prime(n)) = 0, for n >= 1. Because for GCD(-a,prime(n)) = 1  and  for n >= 2 the Legendre symbol is (-a)^((prime(n)-1)/2) (mod prime(n)), it is sufficient to consider a = 0 .. prime(n) - 1, due to periodicity. Caution for n=1 (prime 2): Jacobi(-a/2) has period length 8: [0,1,0,-1,0,-1,0,1]. Here row n = 1 is [0, 1]. For odd -m the solution of x^2 == -1 (mod 2) is x = 1 in the residue class {0,1} modulo 2. So -m is always a quadratic residue modulo 2 for odd m. This would lead to [repeat (0,1)] with period length 2. LINKS FORMULA T(n, m) = 0 if m = 0. T(n, m) = Legendre(-m, prime(n)) for m = 1, ..., prime(n)-1, n >= 2, and T(1, 1) = +1 (Jacobi symbol). EXAMPLE The irregular triangle T(n, m) begins (here P(n) = prime(n)): n, P(n)\m 0  1  2  3  4  5  6  7  8  9 10 ... 1,  2:    0  1 2,  3:    0 -1  1 3,  5:    0  1 -1 -1  1 4,  7:    0 -1 -1  1 -1  1  1 5, 11:    0 -1  1 -1 -1 -1  1  1  1 -1  1 ... Row n=6, P(6)=13: 0  1  1 -1  1 -1 -1 -1  1  1 -1 -1 -1 1 -1 1 1; Row n=7, P(7)=17: 0 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1; Row n=8, P(8)=19: 0 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1. ... CROSSREFS Cf. A000040, A226520. Sequence in context: A157412 A023532 A226520 * A327180 A030308 A280237 Adjacent sequences:  A268918 A268919 A268920 * A268922 A268923 A268924 KEYWORD sign,tabf AUTHOR Wolfdieter Lang, Feb 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:38 EDT 2020. Contains 334711 sequences. (Running on oeis4.)