login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268920
Denominators of the rational number triangle R(n, k) = (n^4 - 30*n^2*k^2 + 60*n*k^3 - 30*k^4) / (120*n), n >= 1, k = 1, ..., n.
5
120, 120, 15, 120, 120, 40, 240, 15, 240, 15, 120, 120, 120, 120, 24, 120, 15, 40, 15, 120, 5, 840, 840, 840, 840, 840, 840, 120, 480, 30, 480, 15, 480, 30, 480, 15, 360, 360, 40, 360, 360, 40, 360, 360, 40, 120, 15, 120, 15, 24, 15, 120, 15, 120, 3, 1320, 1320, 1320, 1320, 1320, 1320, 1320, 1320, 1320, 1320, 120, 240, 15, 80, 15, 240, 5, 240, 15, 80, 15, 240, 5
OFFSET
1,1
COMMENTS
For the numerator triangle see A268919.
For details and the Hurwitz reference see A267863.
FORMULA
T(n, k) = denominator(R(n, k)) with the rational triangle R(n, k) = (n^4 - 30*n^2*k^2 + 60*n*k^3 - 30*k^4)/(120*n), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 120
2: 120 15
3: 120 120 40
4: 240 15 240 15
5: 120 120 120 120 24
6: 120 15 40 15 120 5
7: 840 840 840 840 840 840 120
8: 480 30 480 15 480 30 480 15
9: 360 360 40 360 360 40 360 360 40
10: 120 15 120 15 24 15 120 15 120 3
...
For the triangle of the rationals R(n, k) see A268919.
MATHEMATICA
Flatten[Table[(m^4-30m^2 k^2+60m k^3-30k^4)/(120m), {m, 15}, {k, m}]]// Denominator (* Harvey P. Dale, Mar 03 2020 *)
PROG
(Magma)
A268920:= func< n, k | Denominator((n^4-30*n^2*k^2+60*n*k^3-30*k^4)/(120*n)) >;
[A268920(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 05 2024
(SageMath)
def A268920(n, k): return denominator((n^4-30*n^2*k^2+60*n*k^3-30*k^4)/(120*n))
flatten([[A268920(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Oct 05 2024
CROSSREFS
Cf. A267863, A268919 (numerators).
Sequence in context: A332417 A244950 A174149 * A332560 A334571 A056466
KEYWORD
nonn,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Feb 25 2016
STATUS
approved