login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268917
Numerators of the rational number triangle R(n, k) = -k*(n-k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n. This is a regularized Sum_{j >= 0} (k + n*j)^(-s) for s = -2 defined by analytic continuation of a generalized Hurwitz zeta function.
5
0, 0, 0, -1, 1, 0, -1, 0, 1, 0, -2, -1, 1, 2, 0, -5, -4, 0, 4, 5, 0, -5, -5, -2, 2, 5, 5, 0, -7, -1, -5, 0, 5, 1, 7, 0, -28, -35, -1, -10, 10, 1, 35, 28, 0, -6, -8, -7, -4, 0, 4, 7, 8, 6, 0, -15, -21, -20, -14, -5, 5, 14, 20, 21, 15, 0, -55, -20, -9, -16, -35, 0, 35, 16, 9, 20, 55, 0
OFFSET
1,11
COMMENTS
For the denominator triangle see A268918.
For details and the Hurwitz reference see A267863.
FORMULA
T(n, k) = numerator(R(n, k)) with the rational triangle R(n, k) = -k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 0
2: 0 0
3: -1 1 0
4: -1 0 1 0
5: -2 -1 1 2 0
6: -5 -4 0 4 5 0
7: -5 -5 -2 2 5 5 0
8: -7 -1 -5 0 5 1 7 0
9: -28 -35 -1 -10 10 1 35 28 0
10: -6 -8 -7 -4 0 4 7 8 6 0
...
The triangle of the rationals R(n, k) begins:
n\k 1 2 3 4 5 6 7 8
1: 0/1
2: 0/1 0/1
3: -1/9 1/9 0/1
4: -1/4 0/1 1/4 0/1
5: -2/5 -1/5 1/5 2/5 0/1
6: -5/9 -4/9 0/1 4/9 5/9 0/1
7: -5/7 -5/7 -2/7 2/7 5/7 5/7 10/1
8: -7/8 -1/1 -5/8 0/1 5/8 1/1 7/8 0/1
...
Row m=9: -28/27 -35/27 -1/1 -10/27 10/27 1/1 35/27 28/27 0/1;
Row m=10:-6/5 -8/5 -7/5 -4/5 0/1 4/5 7/5 8/5 6/5 0/1.
...
MATHEMATICA
Numerator@ Table[-k (m - k) (m - 2 k)/(6 m), {m, 15}, {k, m}] // Flatten (* Michael De Vlieger, Feb 26 2016 *)
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(numerator(-k*(n-k)*(n-2*k)/(6*n)), ", "); ); print(); ); } \\ Michel Marcus, Feb 26 2016
(Magma)
A268917:= func< n, k | Numerator(k*(k-n)*(n-2*k)/(6*n)) >;
[A268917(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 04 2024
(SageMath)
def A268917(n, k): return numerator(k*(k-n)*(n-2*k)/(6*n))
flatten([[A268917(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Oct 04 2024
CROSSREFS
Cf. A268918 (denominators), A267863/A267864 (n=0), A268915/A268916 (n=1), A268919/A268920 (n=3).
Sequence in context: A244658 A117586 A307988 * A176811 A057594 A259029
KEYWORD
sign,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Feb 24 2016
EXTENSIONS
More terms added by G. C. Greubel, Oct 04 2024
STATUS
approved