OFFSET
1,11
COMMENTS
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
T(n, k) = numerator(R(n, k)) with the rational triangle R(n, k) = -k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 0
2: 0 0
3: -1 1 0
4: -1 0 1 0
5: -2 -1 1 2 0
6: -5 -4 0 4 5 0
7: -5 -5 -2 2 5 5 0
8: -7 -1 -5 0 5 1 7 0
9: -28 -35 -1 -10 10 1 35 28 0
10: -6 -8 -7 -4 0 4 7 8 6 0
...
The triangle of the rationals R(n, k) begins:
n\k 1 2 3 4 5 6 7 8
1: 0/1
2: 0/1 0/1
3: -1/9 1/9 0/1
4: -1/4 0/1 1/4 0/1
5: -2/5 -1/5 1/5 2/5 0/1
6: -5/9 -4/9 0/1 4/9 5/9 0/1
7: -5/7 -5/7 -2/7 2/7 5/7 5/7 10/1
8: -7/8 -1/1 -5/8 0/1 5/8 1/1 7/8 0/1
...
Row m=9: -28/27 -35/27 -1/1 -10/27 10/27 1/1 35/27 28/27 0/1;
Row m=10:-6/5 -8/5 -7/5 -4/5 0/1 4/5 7/5 8/5 6/5 0/1.
...
MATHEMATICA
Numerator@ Table[-k (m - k) (m - 2 k)/(6 m), {m, 15}, {k, m}] // Flatten (* Michael De Vlieger, Feb 26 2016 *)
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(numerator(-k*(n-k)*(n-2*k)/(6*n)), ", "); ); print(); ); } \\ Michel Marcus, Feb 26 2016
(Magma)
A268917:= func< n, k | Numerator(k*(k-n)*(n-2*k)/(6*n)) >;
[A268917(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 04 2024
(SageMath)
def A268917(n, k): return numerator(k*(k-n)*(n-2*k)/(6*n))
flatten([[A268917(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Oct 04 2024
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Feb 24 2016
EXTENSIONS
More terms added by G. C. Greubel, Oct 04 2024
STATUS
approved