login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268918
Denominators of the rational number triangle R(n, k) = - k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.
5
1, 1, 1, 9, 9, 1, 4, 1, 4, 1, 5, 5, 5, 5, 1, 9, 9, 1, 9, 9, 1, 7, 7, 7, 7, 7, 7, 1, 8, 1, 8, 1, 8, 1, 8, 1, 27, 27, 1, 27, 27, 1, 27, 27, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 36, 9, 4, 9, 36, 1, 36, 9, 4, 9, 36, 1, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 1
OFFSET
1,4
COMMENTS
For the numerators see A268917.
For details and the Hurwitz reference see A267863.
FORMULA
T(n, k) = denominator(R(n, k)) with R(n, k) = - k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 ...
1: 1
2: 1 1
3: 9 9 1
4: 4 1 4 1
5: 5 5 5 5 1
6: 9 9 1 9 9 1
7: 7 7 7 7 7 7 1
8: 8 1 8 1 8 1 8 1
9: 27 27 1 27 27 1 27 27 1
10: 5 5 5 5 1 5 5 5 5 1
11: 11 11 11 11 11 11 11 11 11 11 1
12: 36 9 4 9 36 1 36 9 4 9 36 1
...
For the triangle of the rationals R(n, k) see A268917.
MATHEMATICA
Denominator@ Table[-k (m - k) (m - 2 k)/(6 m), {m, 17}, {k, m}] // Flatten (* Michael De Vlieger, Feb 26 2016 *)
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(denominator(- k*(n-k)*(n-2*k)/(6*n)), ", "); ); print(); ); } \\ Michel Marcus, Feb 26 2016
(Magma)
A268918:= func< n, k | Denominator(k*(k-n)*(n-2*k)/(6*n)) >;
[A268918(n, k): k in [1..n], n in [1..17]]; // G. C. Greubel, Oct 04 2024
(SageMath)
def A268918(n, k): return denominator(k*(k-n)*(n-2*k)/(6*n))
flatten([[A268918(n, k) for k in range(1, n+1)] for n in range(1, 18)]) # G. C. Greubel, Oct 04 2024
CROSSREFS
Cf. A268917.
Sequence in context: A280554 A195722 A133627 * A144982 A228788 A019788
KEYWORD
nonn,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Feb 25 2016
EXTENSIONS
More terms added by G. C. Greubel, Oct 04 2024
STATUS
approved