login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the rational number triangle R(n, k) = - k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.
5

%I #16 Oct 05 2024 09:40:28

%S 1,1,1,9,9,1,4,1,4,1,5,5,5,5,1,9,9,1,9,9,1,7,7,7,7,7,7,1,8,1,8,1,8,1,

%T 8,1,27,27,1,27,27,1,27,27,1,5,5,5,5,1,5,5,5,5,1,11,11,11,11,11,11,11,

%U 11,11,11,1,36,9,4,9,36,1,36,9,4,9,36,1,13,13,13,13,13,13,13,13,13,13,13,13,1,7,7,7,7,7,7,1,7,7,7,7,7,7,1

%N Denominators of the rational number triangle R(n, k) = - k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.

%C For the numerators see A268917.

%C For details and the Hurwitz reference see A267863.

%H G. C. Greubel, <a href="/A268918/b268918.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = denominator(R(n, k)) with R(n, k) = - k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.

%e The triangle T(n, k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 10 11 12 ...

%e 1: 1

%e 2: 1 1

%e 3: 9 9 1

%e 4: 4 1 4 1

%e 5: 5 5 5 5 1

%e 6: 9 9 1 9 9 1

%e 7: 7 7 7 7 7 7 1

%e 8: 8 1 8 1 8 1 8 1

%e 9: 27 27 1 27 27 1 27 27 1

%e 10: 5 5 5 5 1 5 5 5 5 1

%e 11: 11 11 11 11 11 11 11 11 11 11 1

%e 12: 36 9 4 9 36 1 36 9 4 9 36 1

%e ...

%e For the triangle of the rationals R(n, k) see A268917.

%t Denominator@ Table[-k (m - k) (m - 2 k)/(6 m), {m, 17}, {k, m}] // Flatten (* _Michael De Vlieger_, Feb 26 2016 *)

%o (PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(denominator(- k*(n-k)*(n-2*k)/(6*n)), ", ");); print(););} \\ _Michel Marcus_, Feb 26 2016

%o (Magma)

%o A268918:= func< n,k | Denominator(k*(k-n)*(n-2*k)/(6*n)) >;

%o [A268918(n,k): k in [1..n], n in [1..17]]; // _G. C. Greubel_, Oct 04 2024

%o (SageMath)

%o def A268918(n,k): return denominator(k*(k-n)*(n-2*k)/(6*n))

%o flatten([[A268918(n,k) for k in range(1,n+1)] for n in range(1,18)]) # _G. C. Greubel_, Oct 04 2024

%Y Cf. A268917.

%K nonn,frac,tabl,easy

%O 1,4

%A _Wolfdieter Lang_, Feb 25 2016

%E More terms added by _G. C. Greubel_, Oct 04 2024