login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268914
Minimum difference between two distinct primes whose sum is 2*prime(n), n>4.
1
12, 12, 12, 24, 12, 24, 24, 12, 24, 48, 12, 12, 24, 36, 12, 24, 12, 36, 48, 36, 60, 24, 12, 12, 60, 48, 48, 36, 60, 24, 36, 24, 12, 72, 60, 12, 24, 36, 84, 60, 60, 84, 24, 120, 60, 96, 12, 24, 60, 24, 12, 12, 24, 84, 12, 24, 108, 48, 48, 84, 72, 72, 36, 60, 72, 36, 12, 84, 60, 12, 60, 72, 60, 48, 36, 24, 60, 24, 24, 48, 36, 48, 36, 168, 36, 48
OFFSET
5,1
COMMENTS
If p>4 is prime, any two primes that add to 2p must be equidistant from p. If p is congruent to 1 Mod 3, then p+2 and p-4 are divisible by 3. Alternatively, if p is congruent to 2 Mod 3, the p-2 and p+4 are divisible by 3. Thus, the equidistant pairs (p-2,p+2) and (p-4,p+4) cannot be primes that add to 2p. On the other hand, adding or subtracting any multiple of 6 will be congruent to the same congruence class as p and may be prime. Thus, the minimal difference between distinct primes that add to p must be a multiple of 12.
Extrapolating from computational evidence for all primes up to 10^9, we conjecture: For each multiple of 12 there are infinitely many primes p such that p-6k and p+6k are prime and 12k is the minimal difference for two distinct primes whose sum is 2p.
LINKS
FORMULA
a(n) = 2*A078611(n+2).
EXAMPLE
For n=5, 2*prime(5)=2*11=5+17 and 17-5=12.
For n=6, 2*prime(6)=2*13=7+19 and 19-7=12.
...
For n=8, 2*prime(8)=2*19=7+31 and 31-7=24.
MAPLE
N:= 1000: # to get a(5) .. a(N)
p:= 7:
for n from 5 to N do
p:= nextprime(p);
for k from 6 by 6 while not isprime(p+k) or not isprime(p-k) do od:
A[n]:= 2*k
od:
seq(A[n], n=5..N); # Robert Israel, Mar 09 2016
MATHEMATICA
f[n_]:=Block[{p=Prime[n], k}, k=p+6;
While[!PrimeQ[k]||!PrimeQ[2p-k], k=k+6]; 2(k-p)];
seq=Reap[Do[Sow[f[n]], {n, 5, 200}]][[2]][[1]];
seq
(*For large data sets (say, N>5000), replace 200 with N and the above algorithm is comparatively efficient.*)
Table[2 SelectFirst[Range[#/2], Function[k, AllTrue[{#/2 + k, #/2 - k}, PrimeQ]]] &[2 Prime@ n], {n, 5, 120}] (* Michael De Vlieger, Mar 09 2016, Version 10 *)
PROG
(PARI) a(n) = {p = prime(n); d = 2; while (! (isprime(p-d) && isprime(p+d)), d+=2); 2*d; } \\ Michel Marcus, Mar 17 2016
KEYWORD
nonn,easy
AUTHOR
Barry Cherkas, Feb 15 2016
STATUS
approved