OFFSET
2,1
COMMENTS
60420 >= a(n) > 0 for n <= 6042, but either a(6043) = 0 or a(6043) > 10^30.
If p is prime, a(p) = a(2*p).
From n = 5, 55, 2, 24, 245, ... begin successive strings of exactly 1, 2, 3, 4, 5, ... identical merging points that are: 15, 105, 12, 77, 713, ... . - Bernard Schott, Jul 04 2020
LINKS
Robert Israel, Table of n, a(n) for n = 2..6042
A. Sada et al., Will this pattern continue, Discussion in SeqFan mailing list, Apr 2020.
Bernard and Blandine Schott, Network with terms < 100.
FORMULA
a(2^m+2) = a(2^m). - Bernard Schott, Jun 27 2020
EXAMPLE
For n=5, 15 = T(F(5)) = T(S(5)) so a(5) = 15.
For n=6, 12 = F(6) = F(S(6)) so a(6) = 12.
For n=10, 15 = T(10) = T(F(10)) so a(10) = 15.
MAPLE
S:= x -> x + min(numtheory:-factorset(x)):
T:= x -> x + max(numtheory:-factorset(x)):
f:= proc(n) local s, t, i, j, ct;
s:= S(n); i:= 0; t:= T(n); j:= 1;
for ct from 1 to 1000 do
if s = t and i=j then return s fi;
if s <= t then
if i = 0 then s:= T(s); i:= 1
else s:= S(s); i:= 0
fi
elif j = 0 then t:= T(t); j:= 1
else t:= S(t); j:= 0
fi
od;
0
end proc:
map(f, [$2..100]);
MATHEMATICA
S[x_] := x + FactorInteger[x][[1, 1]];
T[x_] := x + FactorInteger[x][[-1, 1]];
f[n_] := Module[{s = S[n], t = T[n], i = 0, j = 1, ct}, For[ct = 1, ct <= 1000, ct++, If[s == t && i == j, Return[s]]; If[s <= t, If[i == 0, s = T[s]; i = 1, s = S[s]; i = 0], If[j == 0, t = T[t]; j = 1, t = S[t]; j = 0]]]; 0];
f /@ Range[2, 100] (* Jean-François Alcover, Aug 15 2020, after Maple *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Ali Sada and Robert Israel, Apr 19 2020
STATUS
approved