The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335859 Terms of A334245 in increasing order and without repetition. 2
 12, 15, 21, 30, 35, 57, 60, 65, 70, 77, 91, 105, 111, 114, 119, 126, 133, 143, 147, 150, 155, 165, 168, 180, 185, 190, 198, 209, 217, 220, 231, 234, 255, 260, 264, 294, 301, 310, 312, 319, 323, 330, 341, 360, 427, 432, 437, 455, 456, 462, 473, 497, 504, 510, 511, 546, 559, 588 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See the network with the 50 smallest merging points of A334245 in link. LINKS Robert Israel, Table of n, a(n) for n = 1..5939 Bernard Schott and Blandine Schott, Network of merging points. EXAMPLE l means: add least prime factor, and, L means: add largest prime factor. For 3:    L:  3 + 3 = 6            l: 3 + 3 = 6    l:  6 + 2 = 8            L: 6 + 3 = 9    L:  8 + 2 = 10           l: 9 + 3 = 12    l: 10 + 2 = 12 So A334245(3) = 12 and 12 is a merging point with a(1) = 12. Now, for 12:    L: 12 + 3 = 15           l: 12 + 2 = 14    l: 15 + 3 = 18           L: 14 + 7 = 21    L: 18 + 3 = 21 So A334245(12) = 21 and 21 is the merging point corresponding to 12 with a(3) = 21. MAPLE N:= 1000: # to get all values <= N S:= x -> x + min(numtheory:-factorset(x)): T:= x -> x + max(numtheory:-factorset(x)): f:= proc(n) g(S(n), T(n), 0, 1) end proc: g:= proc(s, t, i, j) option remember;       if max(s, t) > N then return 0 fi;       if s = t and i=j then return s fi;       if s <= t then         if i = 0 then procname(T(s), t, 1, j)         else procname(S(s), t, 0, j)         fi       elif j=0 then procname(s, T(t), i, 1)       else procname(s, S(t), i, 0)       fi end proc: sort(convert(map(f, {\$2..N}) minus {0}, list)); # Robert Israel, Jul 09 2020 CROSSREFS Cf. A334245. Sequence in context: A162826 A162820 A267195 * A259040 A158190 A122040 Adjacent sequences:  A335856 A335857 A335858 * A335860 A335861 A335862 KEYWORD nonn AUTHOR Bernard Schott, Jun 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 06:43 EDT 2021. Contains 346435 sequences. (Running on oeis4.)