login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Terms of A334245 in increasing order and without repetition.
2

%I #46 May 08 2021 08:30:09

%S 12,15,21,30,35,57,60,65,70,77,91,105,111,114,119,126,133,143,147,150,

%T 155,165,168,180,185,190,198,209,217,220,231,234,255,260,264,294,301,

%U 310,312,319,323,330,341,360,427,432,437,455,456,462,473,497,504,510,511,546,559,588

%N Terms of A334245 in increasing order and without repetition.

%C See the network with the 50 smallest merging points of A334245 in link.

%H Robert Israel, <a href="/A335859/b335859.txt">Table of n, a(n) for n = 1..5939</a>

%H Bernard Schott and Blandine Schott, <a href="/A335859/a335859_3.pdf">Network of merging points</a>.

%e l means: add least prime factor, and,

%e L means: add largest prime factor.

%e For 3:

%e L: 3 + 3 = 6 l: 3 + 3 = 6

%e l: 6 + 2 = 8 L: 6 + 3 = 9

%e L: 8 + 2 = 10 l: 9 + 3 = 12

%e l: 10 + 2 = 12

%e So A334245(3) = 12 and 12 is a merging point with a(1) = 12.

%e Now, for 12:

%e L: 12 + 3 = 15 l: 12 + 2 = 14

%e l: 15 + 3 = 18 L: 14 + 7 = 21

%e L: 18 + 3 = 21

%e So A334245(12) = 21 and 21 is the merging point corresponding to 12 with a(3) = 21.

%p N:= 1000: # to get all values <= N

%p S:= x -> x + min(numtheory:-factorset(x)):

%p T:= x -> x + max(numtheory:-factorset(x)):

%p f:= proc(n) g(S(n),T(n),0,1) end proc:

%p g:= proc(s,t,i,j) option remember;

%p if max(s,t) > N then return 0 fi;

%p if s = t and i=j then return s fi;

%p if s <= t then

%p if i = 0 then procname(T(s),t,1,j)

%p else procname(S(s),t,0,j)

%p fi

%p elif j=0 then procname(s,T(t),i,1)

%p else procname(s,S(t),i,0)

%p fi

%p end proc:

%p sort(convert(map(f, {$2..N}) minus {0},list)); # _Robert Israel_, Jul 09 2020

%Y Cf. A334245.

%K nonn

%O 1,1

%A _Bernard Schott_, Jun 27 2020