login
A137796
Prime numbers p such that p + 12 and p - 12 are primes.
6
17, 19, 29, 31, 41, 59, 71, 101, 139, 151, 179, 211, 239, 251, 269, 281, 409, 421, 431, 479, 491, 619, 631, 739, 809, 941, 1009, 1021, 1051, 1289, 1291, 1439, 1459, 1471, 1499, 1511, 1571, 1609, 1709, 1721, 1789, 1889, 1901, 1999, 2099, 2141, 2281, 2411
OFFSET
1,1
LINKS
FORMULA
A092216 INTERSECT A046133. - R. J. Mathar, May 03 2008
EXAMPLE
17 + 12 = 29 (a prime), 17 - 12 = 5 (a prime);
19 + 12 = 31 (a prime), 19 - 12 = 7 (a prime).
MAPLE
isA092216 := proc(n) RETURN(isprime(n) and isprime(n-12) ) ; end: isA046133 := proc(n) RETURN(isprime(n) and isprime(n+12) ) ; end: isA137796 := proc(n) RETURN(isA092216(n) and isA046133(n)) ; end: for i from 1 to 400 do if isA137796(ithprime(i)) then printf("%d, ", ithprime(i)) ; fi ; od: # R. J. Mathar, May 03 2008
MATHEMATICA
a=12; Select[Table[Prime[n], {n, 10^3}], PrimeQ[ #-a] && PrimeQ[ #+a] &]
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p-12) && isprime(p+12), print1(p, ", "))); \\ Michel Marcus, Oct 04 2015
CROSSREFS
Cf. A092216, A046133. Note that this is different from A137873.
Sequence in context: A176462 A060254 A190792 * A125213 A132246 A038969
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, May 03 2008
STATUS
approved