login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137797
a(n) = 2*( (n+1) mod 5 ) - 2*( (n+1) mod 2 ).
1
0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6
OFFSET
0,2
COMMENTS
The sequence is periodic with period 10. - Colin Barker, Dec 16 2014
FORMULA
a(n) = -a(n-1)+a(n-5)+a(n-6) for n>5. - Colin Barker, Dec 16 2014
G.f.: -2*x*(3*x^3+6*x^2+4*x+2) / ((x-1)*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014
EXAMPLE
a(2) = 2*((2+1) mod 5) - 2*((2+1) mod 2) = 2*(3 mod 5) - 2*(3 mod 2) = 4.
MATHEMATICA
LinearRecurrence[{-1, 0, 0, 0, 1, 1}, {0, 4, 4, 8, -2, 2}, 100] (* Harvey P. Dale, Jun 08 2015 *)
PROG
(PARI) concat(0, Vec(-2*x*(3*x^3+6*x^2+4*x+2)/((x-1)*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
CROSSREFS
Suggested by A010700. Used in A137798.
Sequence in context: A067736 A181387 A091671 * A358561 A176295 A140874
KEYWORD
easy,sign
AUTHOR
William A. Tedeschi, Feb 10 2008
STATUS
approved