

A067736


Decimal expansion of exp(3/2).


1



4, 4, 8, 1, 6, 8, 9, 0, 7, 0, 3, 3, 8, 0, 6, 4, 8, 2, 2, 6, 0, 2, 0, 5, 5, 4, 6, 0, 1, 1, 9, 2, 7, 5, 8, 1, 9, 0, 0, 5, 7, 4, 9, 8, 6, 8, 3, 6, 9, 6, 6, 7, 0, 5, 6, 7, 7, 2, 6, 5, 0, 0, 8, 2, 7, 8, 5, 9, 3, 6, 6, 7, 4, 4, 6, 6, 7, 1, 3, 7, 7, 2, 9, 8, 1, 0, 5, 3, 8, 3, 1, 3, 8, 2, 4, 5, 3, 3, 9, 1, 3, 8, 8, 6, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It is well known that derangements, A000166, are related to exp(1) (cf. A001113). It appears that derangements with minimal cycle size 3 relate to exp(1+1/2). for example, 720/160 = 4.5, 5040/1140 = 4.4210, 40320/8988 = 4.4859, 362880/80864 = 4.4875 the pattern continues  derangements with minimal cycle size 4 appear to relate in the same way to exp(1 + 1/2 +1/3).


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

We can write exp(1 + 1/2) = 4.481689 ...


MATHEMATICA

RealDigits[Exp[3/2], 10, 120][[1]] (* Harvey P. Dale, Apr 24 2016 *)


CROSSREFS

Cf. A000142, A000166, A001113, A038205, A047865.
Sequence in context: A273118 A273690 A010660 * A181387 A091671 A137797
Adjacent sequences: A067733 A067734 A067735 * A067737 A067738 A067739


KEYWORD

easy,nonn,cons


AUTHOR

Alford Arnold, Mar 10 2002


EXTENSIONS

More terms from Sascha Kurz, Mar 19 2002


STATUS

approved



