login
A047865
Number of derangements of n where minimal cycle size is at least 4.
7
1, 0, 0, 0, 6, 24, 120, 720, 6300, 58464, 586656, 6384960, 76471560, 994831200, 13939507296, 209097854784, 3345235180560, 56866395720960, 1023601917024000, 19448577603454464, 388972171805410656, 8168409582839579520, 179704944537482689920
OFFSET
0,5
REFERENCES
H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=3).
LINKS
H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 176, Eq. 5.2.9 (q=3).
FORMULA
a(n) = (n-1)*a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4).
E.g.f.: A(x) = 1/(1-x)*exp(-x-x^2/2-x^3/3) = 1 + 6*x^4/4! + 24*x^5/5! + ... satisfies the differential equation A'(x) = x^3/(1-x)*A(x). - Peter Bala, Apr 18 2012
a(n) ~ n! * exp(-11/6). - Vaclav Kotesovec, Aug 13 2013
MAPLE
with(combstruct): ZL3:=[S, {S=Set(Cycle(Z, card>3))}, labeled]:
seq (count (ZL3, size=n), n=0..21); # Zerinvary Lajos, Sep 26 2007
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[Exp[-x-x^2/2-x^3/3]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Nov 11 2012 *)
CROSSREFS
Sequence in context: A354074 A293300 A293487 * A355285 A182083 A293049
KEYWORD
nonn
EXTENSIONS
Definition adjusted by Steven Finch, Mar 10 2022
STATUS
approved