login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055209 a(n) = Product_{i=0..n} i!^2. 22
1, 1, 4, 144, 82944, 1194393600, 619173642240000, 15728001190723584000000, 25569049282962188245401600000000, 3366980847587422591723894776791040000000000, 44337041641882947649156022595410930014617600000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is the discriminant of the polynomial x(x+1)(x+2)...(x+n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 13 2003
This is the Hankel transform (see A001906 for definition) of the sequence: 1, 0, 1, 0, 5, 0, 61, 0, 1385, 0, 50521, ... (see A000364: Euler numbers). - Philippe Deléham, Apr 06 2005
Also, for n>0, the quotient of (-1)^(n-1)S(u)^(n^2)/S(un) and the determinant of the (n-1) X (n-1) square matrix [P'(u), P''(u), ..., P^(n-1)(u); P''(u), P'''(u), ..., P^(n)(u); P'''(u), P^(4)(u), ..., P^(n+1)(u); ...; P^(n-1)(u), P^(n)(u), ..., P^(2n-3)(u)] where S and P are the Weierstrass Sigma and The Weierstrass P-function, respectively and f^(n) is the n-th derivative of f. See the King and Schwarz & Weierstrass references. - Balarka Sen, Jul 31 2013
a(n) is the number of idempotent monotonic labeled magmas. That is, prod(i,j) >= max(i,j) and prod(i,i) = i. - Chad Brewbaker, Nov 03 2013
Ramanujan's infinite nested radical sqrt(1+2*sqrt(1+3*sqrt(1+...))) = 3 can be written sqrt(1+sqrt(4+sqrt(144+...))) = sqrt(a(1)+sqrt(a(2)+sqrt(a(3)+...))). Vijayaraghavan used that to prove convergence of Ramanujan's formula. - Petros Hadjicostas and Jonathan Sondow, Mar 22 2014
a(n) is the determinant of the (n+1)-th order Hankel matrix whose (i,j)-entry is equal to A000142(i+j), i,j = 0,1,...,n. - Michael Shmoish, Sep 02 2020
REFERENCES
R. Bruce King, Beyond The Quartic Equation, Birkhauser Boston, Berlin, 1996, p. 72.
Srinivasa Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.
LINKS
Richard Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Vol. 107, No. 6 (2000), pp. 557-560.
William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 7.
John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Christian Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
H. A. Schwarz and K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Springer, Berlin, 1893, p. 19.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., Vol. 332, No. 1 (2007), pp. 292-314; see pp. 305-306.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
a(n) = A000178(n)^2. - Philippe Deléham, Mar 06 2004
a(n) = Product_{i=0..n} i^(2*n - 2*i + 2). - Charles R Greathouse IV, Jan 12 2012
Asymptotic: a(n) ~ exp(2*zeta'(-1)-3/2*(1+n^2)-3*n)*(2*Pi)^(n+1)*(n+1)^ (n^2+2*n+5/6). - Peter Luschny, Jun 23 2012
lim_{n->infinity} a(n)^(2^(-(n+1))) = 1. - Vaclav Kotesovec, Jun 06 2015
Sum_{n>=0} 1/a(n) = A258619. - Amiram Eldar, Nov 17 2020
MAPLE
seq(mul(mul(j^2, j=1..k), k=0..n), n=0..10); # Zerinvary Lajos, Sep 21 2007
MATHEMATICA
Table[Product[(i!)^2, {i, n}], {n, 0, 11}] (* Harvey P. Dale, Jul 06 2011 *)
Table[BarnesG[n + 2]^2, {n, 0, 11}] (* Jan Mangaldan, May 07 2014 *)
PROG
(PARI) a(n)=prod(i=1, n, i!)^2 \\ Charles R Greathouse IV, Jan 12 2012
(Sage)
def A055209(n) :
return prod(factorial(i)^(2) for i in (0..n))
[A055209(n) for n in (0..11)] # Jani Melik, Jun 06 2015
(Magma) [1] cat [(&*[(Factorial(k))^2: k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
CROSSREFS
Cf. A055209 is the Hankel transform (see A001906 for definition) of A000023, A000142, A000166, A000522, A003701, A010842, A010843, A051295, A052186, A053486, A053487.
Sequence in context: A186081 A138176 A203424 * A239350 A343697 A030450
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 18 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 14:17 EDT 2024. Contains 373587 sequences. (Running on oeis4.)