The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003701 Expansion of e.g.f. exp(x)/cos(x). (Formerly M1259) 12
 1, 1, 2, 4, 12, 36, 152, 624, 3472, 18256, 126752, 814144, 6781632, 51475776, 500231552, 4381112064, 48656756992, 482962852096, 6034272215552, 66942218896384, 929327412759552, 11394877025289216, 174008703107274752 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A000364 (with interpolated zeros). Hankel transform is A055209. - Paul Barry, Jan 12 2009 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..100 T. Chow, Fair permutations and random k-sets, Problem 11523, Amer. Math. Monthly 117 (October 2010), 741; solution by Jim Simons, Amer. Math. Monthly 119 (November 2012), 801-803. J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5. FORMULA G.f.: 1/(1-x-x^2/(1-x-4x^2/(1-x-9x^2/(1-x-16x^2.... (continued fraction). - Paul Barry, Jan 12 2009 E.g.f.: exp(x)*sec(x). - Zerinvary Lajos, Apr 05 2009 E.g.f.: 1+x/H(0); H(k)=4k+1-x+x^2*(4k+1)/((2k+1)*(4k+3)-x^2+x*(2k+1)*(4k+3)/(2k+2-x+x*(2k+2)/H(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011 G.f.: 1/G(0) where G(k)= 1 - 2*x*(k+1)/(1 + 1/(1 + 2*x*(k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 20 2012 G.f.: -1/x/Q(0), where Q(k)= 1 - 1/x - (k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013 G.f.: (1-x)/Q(0), where Q(k)= (1-x)^2 - (1-x)^2*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013 a(n) ~ n! * ((-1)^n*exp(-Pi/2) + exp(Pi/2)) *(2/Pi)^(n+1). - Vaclav Kotesovec, Oct 08 2013 G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)/( x*(2*k+1) - 1/(1 + x*(2*k+1)/( x*(2*k+1) + 1/(1 - x*(2*k+2)/( x*(2*k+2) - 1/(1 + x*(2*k+2)/( x*(2*k+2) + 1/Q(k+1) ))))))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013 G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013 EXAMPLE G.f. = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 + 3472*x^8 + ... MAPLE G(x):= exp(x)*sec(x): f[0]:=G(x): for n from 1 to 54 do f[n]:= diff(f[n-1], x) od: x:=0: seq(f[n], n=0..22); # Zerinvary Lajos, Apr 05 2009 MATHEMATICA a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x ] / Cos[x], {x, 0, n}]] (* Michael Somos, Jun 06 2012 *) PROG (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)/cos(x))) \\ Joerg Arndt, May 07 2013 (Magma) m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)/Cos(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 14 2018 CROSSREFS Cf. A062272, A062161. Bisections are A000795 and A002084(n). Sequence in context: A010551 A349282 A276230 * A255432 A275539 A356062 Adjacent sequences: A003698 A003699 A003700 * A003702 A003703 A003704 KEYWORD nonn AUTHOR R. H. Hardin EXTENSIONS Extended and reformatted 03/97. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 20:05 EST 2024. Contains 370443 sequences. (Running on oeis4.)