login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003699
Number of Hamiltonian cycles in C_4 X P_n.
12
1, 6, 22, 82, 306, 1142, 4262, 15906, 59362, 221542, 826806, 3085682, 11515922, 42978006, 160396102, 598606402, 2234029506, 8337511622, 31116016982, 116126556306, 433390208242, 1617434276662, 6036346898406, 22527953316962, 84075466369442, 313773912160806
OFFSET
1,2
COMMENTS
a(n) is the number of generalized compositions of n when there are i^2+i-1 different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
Is this the same as the sequence visible in Table 5 of Pettersson, 2014? - N. J. A. Sloane, Jun 05 2015
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
FORMULA
a(n) = 2 * A001835(n), n > 1.
From Benoit Cloitre, Mar 28 2003: (Start)
a(n) = ceiling((1 - sqrt(1/3))*(2 + sqrt(3))^n) for n > 1.
a(1) = 1, a(2) = 6, a(3) = 22 and for n > 3, a(n) = 4*a(n-1) - a(n-2). (End)
O.g.f.: x*(1 + 2*x - x^2)/(1-4*x+x^2) = -2 - x + 2*(1 - 3*x)/(1-4*x+x^2). - R. J. Mathar, Nov 23 2007
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = ((1 + sqrt(3))*(2 - sqrt(3))^n - (1 - sqrt(3))*(2 + sqrt(3))^n)/sqrt(3), n > 1.
E.g.f.: ((1 + sqrt(3))*exp((2 - sqrt(3))*x) - (1 - sqrt(3))*exp((2 + sqrt(3))*x) - (2 + x)*sqrt(3))/sqrt(3). (End)
a(n) = 2*(ChebyshevU(n-1, 2) - ChebyshevU(n-2, 2)) for n >1, with a(1)=1. - G. C. Greubel, Dec 23 2019
MAPLE
seq( simplify( `if`(n=1, 1, 2*(ChebyshevU(n-1, 2) - ChebyshevU(n-2, 2))) ), n=1..30); # G. C. Greubel, Dec 23 2019
MATHEMATICA
Join[{1}, LinearRecurrence[{4, -1}, {6, 22}, 30]] (* Harvey P. Dale, Jul 19 2011 *)
Table[If[n<2, n, 2*(ChebyshevU[n-1, 2] - ChebyshevU[n-2, 2])], {n, 30}] (* G. C. Greubel, Dec 23 2019 *)
PROG
(Maxima) (a[1] : 1, a[2] : 6, a[3] : 22, a[n] := 4*a[n - 1] - a[n - 2], makelist(a[n], n, 1, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
(Magma) I:=[1, 6, 22]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
(PARI) vector(30, n, if(n==1, 1, 2*(polchebyshev(n-1, 2, 2) - polchebyshev(n-2, 2, 2))) ) \\ G. C. Greubel, Dec 23 2019
(Sage) [1]+[2*(chebyshev_U(n-1, 2) - chebyshev_U(n-2, 2)) for n in (2..30)] # G. C. Greubel, Dec 23 2019
(GAP) a:=[6, 22];; for n in [3..20] do a[n]:=4a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Dec 23 2019
CROSSREFS
First differences of A052530 and A071954.
Sequence in context: A051945 A253070 A255461 * A047124 A046365 A266184
KEYWORD
nonn,easy
STATUS
approved