login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120893
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3); a(0)=1, a(1)=1, a(2)=5.
5
1, 1, 5, 17, 65, 241, 901, 3361, 12545, 46817, 174725, 652081, 2433601, 9082321, 33895685, 126500417, 472105985, 1761923521, 6575588101, 24540428881, 91586127425, 341804080817, 1275630195845, 4760716702561, 17767236614401
OFFSET
0,3
COMMENTS
For n>1, hypotenuse of primitive Pythagorean triangles having an angle nearing pi/3 for larger values of sides. Complete triple (X,Y,Z),X<Y<Z is given by X=A120892(n),Y=A001353(n),Z=a(n) with recurrence relations X(i+1)=2*{a(i)-(-1)^i}-X(i-1) ; Y(i+1)=2*T(i)-T(i-1)-(-1)^i, where T(i)=Y(i)+a(i)] a(n)=2*A120892(n)-(-1)^n.
REFERENCES
R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
LINKS
W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
FORMULA
Union of A103772 and A103974. a(n)=2*{2*a(n-1) + (-1)^n} - a(n-2) ; a(0)=1,a(1)=1.
a(n) = [(-1)^n+(2-sqrt(3))^n+(2+sqrt(3))^n]/3. - Emeric Deutsch, Jul 24 2006
O.g.f: -(-1+2*x+x^2)/((1+x)*(x^2-4*x+1)). - R. J. Mathar, Dec 02 2007
a(n)+a(n+1) = A003699(n+1), n>0. - R. J. Mathar, Oct 15 2013
MAPLE
a[0]:=1: a[1]:=1: a[2]:=5: for n from 3 to 40 do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3] od: seq(a[n], n=0..30); # Emeric Deutsch, Jul 24 2006
MATHEMATICA
Transpose[NestList[Flatten[{Rest[#], 3Last[#]+3#[[2]]- First[#]}]&, {1, 1, 5}, 25]][[1]] (* or *)
CoefficientList[Series[(1-2 x-x^2)/(1-3 x-3 x^2+x^3), {x, 0, 25}], x] (* Harvey P. Dale, Mar 27 2011 *)
PROG
(Magma) [Floor(((-1)^n+(2-Sqrt(3))^n+(2+Sqrt(3))^n)/3): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
CROSSREFS
Sequence in context: A253067 A273793 A196926 * A195531 A273535 A149672
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Jul 14 2006
EXTENSIONS
More terms from Emeric Deutsch, Jul 24 2006
STATUS
approved