login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103772 Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area. 5
1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...

Values of (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3*y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006

The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.

Shortest side of (k,k+2,k+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013

Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013

LINKS

Colin Barker, Table of n, a(n) for n = 1..850

J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)

J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.

Project Euler, Problem 94: Almost Equilateral Triangles.

Index entries for linear recurrences with constant coefficients, signature (15,-15,1).

FORMULA

a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007

a(n) = A052530(n-1)*A052530(n) + 1. - Johannes Boot, May 21 2011

G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016

a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016

a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016

a(n) = A001353(n)^2 + A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020

MATHEMATICA

a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)

LinearRecurrence[{15, -15, 1}, {1, 17, 241}, 20] (* Harvey P. Dale, Jan 02 2016 *)

RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)

PROG

(PARI) Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016

(Magma) I:=[1, 17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016

CROSSREFS

Cf. A102341, A103974, A016064, A011945, A028230.

Sequence in context: A142126 A251769 A290340 * A196987 A051560 A259347

Adjacent sequences: A103769 A103770 A103771 * A103773 A103774 A103775

KEYWORD

nonn,easy

AUTHOR

Zak Seidov, Feb 23 2005

EXTENSIONS

More terms from Robert G. Wilson v, Mar 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)