login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103772
Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.
5
1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
OFFSET
1,2
COMMENTS
Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...
Values of (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3*y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006
The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.
Shortest side of (k,k+2,k+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013
Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013
LINKS
J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)
J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
FORMULA
a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007
a(n) = A052530(n-1)*A052530(n) + 1. - Johannes Boot, May 21 2011
G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016
a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016
a(n) = A001353(n)^2 + A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020
MATHEMATICA
a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)
LinearRecurrence[{15, -15, 1}, {1, 17, 241}, 20] (* Harvey P. Dale, Jan 02 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
PROG
(PARI) Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
(Magma) I:=[1, 17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Feb 23 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 24 2005
STATUS
approved