login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028230 Bisection of A001353. Indices of square numbers which are also octagonal. 22
1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Chebyshev S-sequence with Diophantine property.

4*b(n)^2 - 3*a(n)^2 = 1 with b(n)=A001570(n), n>=0.

y satisfying the Pellian x^2 - 3*y^2=1, for even x given by A094347(n). - Lekraj Beedassy, Jun 03 2004

a(n) = L(n,-14)*(-1)^n, where L is defined as in A108299; see also A001570 for L(n,+14). - Reinhard Zumkeller, Jun 01 2005

Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n)=A001834(n)*A001835(n). - Lekraj Beedassy, Jul 13 2006

Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. [From Ctibor O. Zizka, Sep 04 2008]

As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 15 2011

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.

J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.

Dino Lorenzini, Z Xiang, Integral points on variable separated curves, Preprint 2016; http://alpha.math.uga.edu/~lorenz/IntegralPoints.pdf

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..890

T. N. E. Greville, Table for third-degree spline interpolations with equally spaced arguments, Math. Comp., 24 (1970), 179-183.

W. D. Hoskins, Table for third-degree spline interpolation using equi-spaced knots, Math. Comp., 25 (1971), 797-801.

Tanya Khovanova, Recursive Sequences

F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.

Eric Weisstein's World of Mathematics, Octagonal Square Number.

Index entries for linear recurrences with constant coefficients, signature (14,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = 2*A001921(n)+1.

a(n) = 14*a(n-1) - a(n-2) for n>1.

a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(n, 14)=A007655(n+1) and S(n, 4)=A001353(n+1).

G.f.: x*(1+x)/(1-14*x+x^2).

a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).

a(n+1) = sum(((-1)^k)*binomial(2*n-k, k)*16^(n-k), k=0..n), n>=0.

a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).

a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002

4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - Creighton Dement, Dec 04 2004

Define f[x,s] = s x + Sqrt[(s^2-1)x^2+1]; f[0,s]=0. a(n) = f[a(n-1),7] + f[a(n-2),7]. - Marcos Carreira, Dec 27 2006

From Ant King, Nov 15 2011: (Start)

a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).

a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)).

(End)

MATHEMATICA

LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *)

CoefficientList[Series[(1 + x)/(1 - 14 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)

PROG

(Sage) [(lucas_number2(n, 14, 1)-lucas_number2(n-1, 14, 1))/12 for n in xrange(1, 18)] # Zerinvary Lajos, Nov 10 2009

(PARI) Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014

CROSSREFS

Cf. A036428, A046184.

Cf. A077416 with companion A077417.

Sequence in context: A280160 A239991 A274563 * A122572 A067560 A019553

Adjacent sequences:  A028227 A028228 A028229 * A028231 A028232 A028233

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Eric W. Weisstein

Additional comments from Wolfdieter Lang, Nov 29 2002

Incorrect recurrence relation deleted by Ant King, Nov 15 2011

Minor edits by Vaclav Kotesovec, Jan 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 15:14 EDT 2017. Contains 284082 sequences.