OFFSET
0,1
COMMENTS
Even x satisfying the Pellian x^2 - 3*y^2 = 1. For corresponding y see A028230.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..874
Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (14,-1).
FORMULA
G.f.: 2*(1 - 13*x)/(1 - 14*x + x^2). [Philippe Deléham, Nov 17 2008]
a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1))/2. - Gerry Martens, Jun 03 2015
a(n) = (1/2)*sqrt(4 + (-2*sqrt(-2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)) + sqrt(3)*sqrt(2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)))^2). - Gerry Martens, Jun 03 2015
E.g.f.: exp(7*x)*(2*cosh(4*sqrt(3)*x) - sqrt(3)*sinh(4*sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 12 2018
MATHEMATICA
LinearRecurrence[{14, -1}, {2, 2}, 40] (* or *) CoefficientList[ Series[2(1-13x)/(1-14x+x^2), {x, 0, 39}], x] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(Maxima) (a[0]:2, a[1]:2, a[n] := 14*a[n - 1] - a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Jun 03 2004
EXTENSIONS
Corrected by Lekraj Beedassy, Jun 11 2004
STATUS
approved