The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094347 a(n) = 14*a(n-1) - a(n-2); a(0) = a(1) = 2. 6
 2, 2, 26, 362, 5042, 70226, 978122, 13623482, 189750626, 2642885282, 36810643322, 512706121226, 7141075053842, 99462344632562, 1385331749802026, 19295182152595802, 268747218386539202, 3743165875258953026 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Even x satisfying the Pellian x^2 - 3*y^2 = 1. For corresponding y see A028230. LINKS Table of n, a(n) for n=0..17. R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission] Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (14,-1). FORMULA G.f.: 2*(1 - 13*x)/(1 - 14*x + x^2). [Philippe Deléham, Nov 17 2008] a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1))/2. - Gerry Martens, Jun 03 2015 a(n) = (1/2)*sqrt(4 + (-2*sqrt(-2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)) + sqrt(3)*sqrt(2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)))^2). - Gerry Martens, Jun 03 2015 E.g.f.: exp(7*x)*(2*cosh(4*sqrt(3)*x) - sqrt(3)*sinh(4*sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 12 2018 MATHEMATICA LinearRecurrence[{14, -1}, {2, 2}, 40] (* or *) CoefficientList[ Series[2(1-13x)/(1-14x+x^2), {x, 0, 39}], x] (* Harvey P. Dale, Apr 23 2011 *) PROG (Maxima) (a[0]:2, a[1]:2, a[n] := 14*a[n - 1] - a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */ CROSSREFS a(n) = 2*A001570(n). Bisection of A001075. Cf. A028230. Sequence in context: A120979 A348587 A032000 * A236286 A288208 A024577 Adjacent sequences: A094344 A094345 A094346 * A094348 A094349 A094350 KEYWORD nonn,easy AUTHOR Lekraj Beedassy, Jun 03 2004 EXTENSIONS Corrected by Lekraj Beedassy, Jun 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 18:23 EDT 2023. Contains 363076 sequences. (Running on oeis4.)