login
A371932
G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 + A(x)^5).
0
1, 2, 2, 26, 50, 706, 1650, 24282, 62370, 940610, 2554530, 39150810, 110311762, 1709993346, 4945525650, 77314273562, 228002115650, 3587763069826, 10741365151810, 169903043416730, 514833595840370, 8177978884039490, 25025386537586610
OFFSET
0,2
FORMULA
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(3*n-5*k-2,n-1) for n > 0.
a(n) == 2 (mod 8) for n > 0. - Hugo Pfoertner, Apr 13 2024
PROG
(PARI) a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n-5*k-2, n-1))/n);
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 13 2024
STATUS
approved