login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371929
Decimal expansion of Pi^(1/2)*Gamma(1/12)/(6*Gamma(7/12)).
2
2, 2, 2, 2, 1, 5, 8, 6, 0, 3, 9, 6, 6, 4, 1, 4, 4, 6, 6, 9, 1, 5, 5, 8, 5, 3, 4, 3, 9, 2, 7, 2, 7, 7, 6, 1, 9, 0, 3, 3, 4, 5, 9, 7, 5, 1, 1, 4, 2, 5, 7, 7, 5, 0, 5, 3, 6, 9, 9, 9, 6, 2, 4, 1, 9, 4, 2, 8, 8, 3, 4, 0, 9, 1, 8, 4, 1, 3, 4, 0, 3, 9, 6, 2, 5, 8, 4, 2, 0
OFFSET
1,1
COMMENTS
Constants from generalized Pi integrals: the case of n=12.
LINKS
FORMULA
Equals 2*Integral_{x=0..1} dx/sqrt(1-x^12).
Equals Beta(1/12, 1/2) / 6. - Peter Luschny, Apr 14 2024
Equals (1 + sqrt(3)) * Gamma(1/4)^2 / (4 * 3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Apr 15 2024
EXAMPLE
2.2221586039664144669155853439....
MAPLE
Beta(1/12, 1/2) / 6: evalf(%, 89); # Peter Luschny, Apr 14 2024
MATHEMATICA
RealDigits[Sqrt[Pi]/6*Gamma[1/12]/Gamma[7/12], 10, 5001][[1]]
RealDigits[(1 + Sqrt[3]) * Gamma[1/4]^2 / (4 * 3^(3/4) * Sqrt[Pi]), 10, 120][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Takayuki Tatekawa, Apr 12 2024
STATUS
approved