login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345202
Decimal expansion of gamma + zeta(2), where gamma is Euler's constant (A001620).
1
2, 2, 2, 2, 1, 4, 9, 7, 3, 1, 7, 4, 9, 7, 5, 9, 2, 9, 7, 0, 7, 8, 9, 2, 7, 2, 5, 6, 7, 2, 8, 4, 2, 7, 6, 2, 0, 2, 6, 1, 1, 0, 9, 2, 3, 7, 1, 4, 6, 7, 2, 2, 0, 3, 6, 5, 4, 1, 3, 2, 5, 4, 6, 4, 2, 5, 4, 8, 7, 5, 1, 9, 7, 1, 8, 0, 8, 6, 5, 5, 4, 4, 7, 7, 0, 5, 7
OFFSET
1,1
COMMENTS
The value of the sum (see the Formula section) discovered in 1926 by the Italian mathematician and historian of science Giovanni Enrico Eugenio Vacca (1872-1953).
REFERENCES
G. Vacca, Nuova serie per la costante di Eulero, C=0,577..., Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche, Matematiche e Naturali, Serie 6, Vol. 3 (1926), pp. 19-20.
LINKS
Ettore Carruccio, Giovanni Vacca, matematico, storico e filosofo della scienza, Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 8 (1953), pp. 448-456.
FORMULA
Equals Sum_{k>=1} (1/floor(sqrt(k))^2 - 1/k) (Vacca, 1926).
Equals Sum_{k>=1} f(k)/k^2, where f(k) = Sum_{j=1..2*k} j/(j + k^2).
Equals A001620 + A013661.
EXAMPLE
2.22214973174975929707892725672842762026110923714672...
MATHEMATICA
RealDigits[EulerGamma + Pi^2/6, 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jun 10 2021
STATUS
approved