login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281659
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with 9*x^2 + 16*y^2 + 24*z^2 + 48*w^2 a square, where x,y,z,w are nonnegative integers.
1
1, 2, 2, 2, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 5, 1, 2, 2, 8, 1, 2, 5, 2, 2, 4, 3, 2, 8, 1, 5, 4, 2, 2, 3, 3, 4, 4, 3, 2, 2, 4, 2, 6, 1, 1, 3, 2, 3, 5, 2, 3, 7, 3, 1, 7, 1, 5, 2, 2, 4, 1, 1, 6, 7, 2, 1, 7, 2, 4, 5, 6, 0, 8, 3, 6, 8, 5, 3, 4, 2, 2
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 except for n = 71, 85.
(ii) Any nonnegative integer n not among 39, 71 and 649 can be written as x^2 + y^2 + z^2 + w^2 with x^2 + 16*y^2 + 24*z^2 + 32*w^2 a square, where x,y,z,w are integers.
(iii) Each nonnegative integer n not among 5, 7, 23, 47, 93, 103, 109, 151, 191 and 911 can be written as x^2 + y^2 + z^2 + w^2 with x^2 + 3*y^2 + 8*z^2 + 16*w^2 a square, where x,y,z,w are integers.
(iv) Any nonnegative integer n not among 15, 19, 71, 103, 191 and 559 can be written as x^2 + y^2 + z^2 + w^2 with 9*x^2 + 48*y^2 + 64*z^2 + 96*w^2 a square, where x,y,z,w are integers.
(v) Any nonnegative integer n not among 5, 93, 95, 161 and 309 can be written as x^2 + y^2 + z^2 + w^2 with 16*x^2 + 25*y^2 + 48*z^2 + 128*w^2 a square, where x,y,z,w are integers.
(vi) Each nonnegative integer not among 13, 19, 39, 41, 71, 109, 131, 193, 233, 377, 415 and 941 can be written as x^2 + y^2 + z^2 + w^2 with x^2 + 24*y^2 + 48*z^2 + 144*w^2 a square, where x,y,z,w are integers.
We have verified part (i) of the conjecture for n up to 1.2*10^5.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(11) = 1 since 11 = 3^2 + 1^2 + 1^2 + 0^2 with 9*3^2 + 16*1^2 + 24*1^2 + 48*0 = 11^2.
a(170) = 1 since 170 = 3^2 + 6^2 + 2^2 + 11^2 with 9*3^2 + 16*6^2 + 24*2^2 + 48*11^2 = 81^2.
a(305) = 1 since 305 = 0^2 + 15^2 + 4^2 + 8^2 with 9*0^2 + 16*15^2 + 24*4^2 + 48*8^2 = 84^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[9x^2+16y^2+24z^2+48*(n-x^2-y^2-z^2)], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Label[aa]; Continue, {n, 0, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 26 2017
STATUS
approved