login
Decimal expansion of Pi^(1/2)*Gamma(1/12)/(6*Gamma(7/12)).
2

%I #16 Apr 15 2024 07:15:04

%S 2,2,2,2,1,5,8,6,0,3,9,6,6,4,1,4,4,6,6,9,1,5,5,8,5,3,4,3,9,2,7,2,7,7,

%T 6,1,9,0,3,3,4,5,9,7,5,1,1,4,2,5,7,7,5,0,5,3,6,9,9,9,6,2,4,1,9,4,2,8,

%U 8,3,4,0,9,1,8,4,1,3,4,0,3,9,6,2,5,8,4,2,0

%N Decimal expansion of Pi^(1/2)*Gamma(1/12)/(6*Gamma(7/12)).

%C Constants from generalized Pi integrals: the case of n=12.

%H Takayuki Tatekawa, <a href="/A371929/b371929.txt">Table of n, a(n) for n = 1..10001</a>

%F Equals 2*Integral_{x=0..1} dx/sqrt(1-x^12).

%F Equals Beta(1/12, 1/2) / 6. - _Peter Luschny_, Apr 14 2024

%F Equals (1 + sqrt(3)) * Gamma(1/4)^2 / (4 * 3^(3/4) * sqrt(Pi)). - _Vaclav Kotesovec_, Apr 15 2024

%e 2.2221586039664144669155853439....

%p Beta(1/12, 1/2) / 6: evalf(%, 89); # _Peter Luschny_, Apr 14 2024

%t RealDigits[Sqrt[Pi]/6*Gamma[1/12]/Gamma[7/12], 10, 5001][[1]]

%t RealDigits[(1 + Sqrt[3]) * Gamma[1/4]^2 / (4 * 3^(3/4) * Sqrt[Pi]), 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 15 2024 *)

%Y Cf. A085565, A113477, A262427, A371824.

%K nonn,cons

%O 1,1

%A _Takayuki Tatekawa_, Apr 12 2024