login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236286
a(n) = tau(n)^sigma(n) / tau(n)^n, where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.
4
1, 2, 2, 27, 2, 4096, 2, 16384, 81, 65536, 2, 2821109907456, 2, 1048576, 262144, 30517578125, 2, 21936950640377856, 2, 131621703842267136, 4194304, 268435456, 2, 324518553658426726783156020576256, 729, 4294967296, 67108864, 6140942214464815497216, 2
OFFSET
1,2
COMMENTS
a(n) = tau(n)^sigma_p(n), where sigma_p(n) = A001065(n) = the sum of proper divisors of n.
LINKS
FORMULA
a(n) = A236285(n) / A236284(n) = A000005(n)^A000203(n) / A000005(n)^n = A000005(n)^A001065(n).
a(p) = 2 for p = primes (A000040).
EXAMPLE
a(4) = tau(4)^sigma(4) / tau(4)^4 = 3^7 /3^4 = 27.
MATHEMATICA
Table[DivisorSigma[0, n]^[DivisorSigma[1, n] - n], {n, 1000}]
PROG
(PARI) s=[]; for(n=1, 30, s=concat(s, sigma(n, 0)^sigma(n)/sigma(n, 0)^n)); s \\ Colin Barker, Jan 22 2014
CROSSREFS
Cf. A000005 (tau(n)), A000203 (sigma(n)), A001065 (sigma_p(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236284 (tau(n)^n), A236285 (tau(n)^sigma(n)).
Sequence in context: A371932 A371639 A094347 * A288208 A024577 A121222
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 21 2014
STATUS
approved