login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236283
The number of orbits of triples of {1,2,...,n} under the action of the dihedral group of order 2n.
7
1, 4, 5, 10, 13, 20, 25, 34, 41, 52, 61, 74, 85, 100, 113, 130, 145, 164, 181, 202, 221, 244, 265, 290, 313, 340, 365, 394, 421, 452, 481, 514, 545, 580, 613, 650, 685, 724, 761, 802, 841, 884, 925, 970, 1013, 1060, 1105, 1154, 1201, 1252
OFFSET
1,2
COMMENTS
In other words, a(n) is the number of equivalence classes of length 3 words with an alphabet of size n where equivalence is up to rotation or reflection of the alphabet. For example when n is 3, the word 112 is equivalent to 223 and 331 by rotation of the alphabet, and these are equivalent to 332, 221 and 113 by reflection of the alphabet. - Andrew Howroyd, Jan 17 2020
FORMULA
Conjectures from Colin Barker, Jan 21 2014: (Start)
a(n) = (5 + 3*(-1)^n + 2*n^2)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(2*x^3-3*x^2+2*x+1) / ((x-1)^3*(x+1)).
(End)
From Andrew Howroyd, Jan 17 2020: (Start)
The above conjectures are true and can be derived from the following formulas for even and odd n.
a(n) = (n-2)*(n + 2)/2 + 4 for even n.
a(n) = (n-1)*(n + 1)/2 + 1 for odd n.
(End)
a(n) = A081352(n - 1) - A116940(n - 1). - Miko Labalan, Nov 12 2016
EXAMPLE
For n = 3 there are 5 orbits of triples:
[[1,1,1], [2,2,2], [3,3,3]],
[[1,1,2], [2,2,3], [1,1,3], [3,3,1], [3,3,2], [2,2,1]],
[[1,2,1], [2,3,2], [1,3,1], [3,1,3], [3,2,3], [2,1,2]],
[[1,2,2], [2,3,3], [1,3,3], [3,1,1], [3,2,2], [2,1,1]],
[[1,2,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1], [2,1,3]].
PROG
(GAP)
a:=function(n)
local g, orbs;
g:=DihedralGroup(IsPermGroup, 2*n);
orbs := OrbitsDomain(g, Tuples( [ 1 .. n ], 3), OnTuples );
return Size(orbs);
end;;
(PARI) a(n) = {(5 + 3*(-1)^n + 2*n^2)/4} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
Cf. A236332 (4-tuples).
Sequence in context: A094415 A114517 A283246 * A378273 A357865 A366864
KEYWORD
nonn,easy
AUTHOR
W. Edwin Clark, Jan 21 2014
STATUS
approved