login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236332
The number of orbits of 4-tuples of the dihedral group of order 2n acting on {1,2,...,n}.
2
1, 8, 14, 36, 63, 112, 172, 260, 365, 504, 666, 868, 1099, 1376, 1688, 2052, 2457, 2920, 3430, 4004, 4631, 5328, 6084, 6916, 7813, 8792, 9842, 10980, 12195, 13504, 14896, 16388, 17969, 19656, 21438, 23332, 25327, 27440, 29660, 32004, 34461, 37048, 39754, 42596, 45563
OFFSET
1,2
COMMENTS
In other words, a(n) is the number of equivalence classes of length 4 words with an alphabet of size n where equivalence is up to rotation or reflection of the alphabet. - Andrew Howroyd, Jan 17 2020
FORMULA
Conjectures from Colin Barker, Jan 22 2014: (Start)
a(n) = (9 + 7*(-1)^n + 2*n^3)/4.
G.f.: -x*(4*x^4-12*x^3+8*x^2-5*x-1) / ((x-1)^4*(x+1)).
(End)
From Andrew Howroyd, Jan 17 2020: (Start)
The above conjectures are true and can be derived from the following formulas for even and odd n.
a(n) = (n-2)*(n^2 + 2*n + 4)/2 + 8 for even n.
a(n) = (n-1)*(n^2 + n + 1)/2 + 1 for odd n.
(End)
EXAMPLE
For n = 3 there are the following 14 orbits of 4-tuples for the group D6 = S3:
1) [[1,1,1,1], [2,2,2,2], [3,3,3,3]],
2) [[1,1,1,2], [2,2,2,3], [1,1,1,3], [3,3,3,1], [3,3,3,2], [2,2,2,1]],
3) [[1,1,2,1], [2,2,3,2], [1,1,3,1], [3,3,1,3], [3,3,2,3], [2,2,1,2]],
4) [[1,1,2,2], [2,2,3,3], [1,1,3,3], [3,3,1,1], [3,3,2,2], [2,2,1,1]],
5) [[1,1,2,3], [2,2,3,1], [1,1,3,2], [3,3,1,2], [3,3,2,1], [2,2,1,3]],
6) [[1,2,1,1], [2,3,2,2], [1,3,1,1], [3,1,3,3], [3,2,3,3], [2,1,2,2]],
7) [[1,2,1,2], [2,3,2,3], [1,3,1,3], [3,1,3,1], [3,2,3,2], [2,1,2,1]],
8) [[1,2,1,3], [2,3,2,1], [1,3,1,2], [3,1,3,2], [3,2,3,1], [2,1,2,3]],
9) [[1,2,2,1], [2,3,3,2], [1,3,3,1], [3,1,1,3], [3,2,2,3], [2,1,1,2]],
10) [[1,2,2,2], [2,3,3,3], [1,3,3,3], [3,1,1,1], [3,2,2,2], [2,1,1,1]],
11) [[1,2,2,3], [2,3,3,1], [1,3,3,2], [3,1,1,2], [3,2,2,1], [2,1,1,3]],
12) [[1,2,3,1], [2,3,1,2], [1,3,2,1], [3,1,2,3], [3,2,1,3], [2,1,3,2]],
13) [[1,2,3,2], [2,3,1,3], [1,3,2,3], [3,1,2,1], [3,2,1,2], [2,1,3,1]],
14) [[1,2,3,3], [2,3,1,1], [1,3,2,2], [3,1,2,2], [3,2,1,1], [2,1,3,3]].
PROG
(GAP)
a:=function(n)
local g, orbs;
g:=DihedralGroup(IsPermGroup, 2*n);
orbs := OrbitsDomain(g, Tuples( [ 1 .. n ], 4), OnTuples );
return Size(orbs);
end;;
(PARI) a(n) = {(9 + 7*(-1)^n + 2*n^3)/4} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
Cf. A236283 (3-tuples).
Sequence in context: A225606 A117132 A064969 * A220037 A144840 A257709
KEYWORD
nonn,easy
AUTHOR
W. Edwin Clark, Jan 22 2014
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved