login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220037
Number of 7 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 7 X n array.
1
8, 14, 36, 119, 297, 626, 1165, 1963, 3088, 4630, 6711, 9492, 13175, 18010, 24304, 32431, 42843, 56082, 72793, 93738, 119811, 152054, 191674, 240061, 298807, 369726, 454875, 556576, 677439, 820386, 988676, 1185931, 1416163, 1683802, 1993725
OFFSET
1,1
COMMENTS
Row 7 of A220032.
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 - (7/240)*n^5 + (107/144)*n^4 - (209/48)*n^3 + (1609/45)*n^2 + (1913/60)*n - 813 for n>9.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(8 - 42*x + 106*x^2 - 119*x^3 + 10*x^4 + 108*x^5 - 123*x^6 + 58*x^7 + 36*x^8 - 68*x^9 + 33*x^10 - 10*x^11 - 2*x^12 + 10*x^13 - 3*x^14 - x^15) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>16.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....1..1..1....1..0..0....1..0..0....0..0..0....1..0..0....0..0..0
..1..0..0....1..1..1....1..0..0....1..1..1....0..0..0....1..0..0....0..0..0
..1..0..0....1..1..1....1..0..0....1..1..1....0..0..0....1..0..0....1..0..0
..1..0..0....1..1..1....1..1..1....1..1..1....0..0..0....1..0..0....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....1..1..1....1..1..1
CROSSREFS
Cf. A220032.
Sequence in context: A117132 A064969 A236332 * A144840 A257709 A121866
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 03 2012
STATUS
approved