login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220034
Number of 4 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 4 X n array.
1
5, 8, 15, 34, 61, 95, 137, 187, 246, 315, 395, 487, 592, 711, 845, 995, 1162, 1347, 1551, 1775, 2020, 2287, 2577, 2891, 3230, 3595, 3987, 4407, 4856, 5335, 5845, 6387, 6962, 7571, 8215, 8895, 9612, 10367, 11161, 11995, 12870, 13787, 14747, 15751, 16800
OFFSET
1,1
COMMENTS
Row 4 of A220032.
LINKS
FORMULA
Empirical: a(n) = (1/6)*n^3 + (1/2)*n^2 + (43/3)*n - 45 for n>5.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(5 - 12*x + 13*x^2 + 2*x^3 - 12*x^4 + 3*x^5 + 2*x^6 - x^7 + x^8) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....1..1..1....0..0..0
..1..1..0....1..0..0....1..0..0....0..0..0....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....0..0..0....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..0....0..0..0....1..1..1....1..0..0
CROSSREFS
Cf. A220032.
Sequence in context: A327605 A259724 A259585 * A063731 A129316 A039752
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 03 2012
STATUS
approved