

A114517


Numbers n such that nth heptagonal number is semiprime.


1



4, 5, 10, 13, 14, 17, 22, 26, 29, 34, 41, 46, 53, 61, 62, 73, 74, 94, 97, 101, 109, 113, 118, 122, 146, 158, 166, 173, 178, 194, 197, 218, 229, 241, 257, 262, 274, 277, 281, 298, 314, 326, 334, 353, 358, 382, 389, 397, 398, 409, 421, 454, 458, 461, 521, 538
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Hep(2) = 7 is the only prime heptagonal number.


LINKS

Table of n, a(n) for n=1..56.
Eric Weisstein's World of Mathematics, Heptagonal Number.
Eric Weisstein's World of Mathematics, Semiprime.


FORMULA

n such that Hep(n) = n*(5*n3)/2 is semiprime.
n such that A000566(n) is an element of A001358.
n such that A001222(A000566(n)) = 2.
n such that A001222(n*(5*n3)/2) = 2.
n such that [n/2 prime and 5*n3 prime] or [n prime and (5*n3)/2 prime].


EXAMPLE

a(1) = 4 because Hep(4) = 4*(5*43)/2 = 34 = 2 * 17 is semiprime.
a(2) = 5 because Hep(5) = 5*(5*53)/2 = 55 = 5 * 11 is semiprime.
a(10) = 34 because Hep(34) = 2839 = 17 * 167 is semiprime and this is also the first iterated heptagonal semiprime Hep(34) = Hep(Hep(4)).
a(20) = 101 because Hep(101) = 25351 = 101 * 251 is semiprime [and brilliant].


MATHEMATICA

Select[Range[700], PrimeOmega[(#(5#3))/2]==2&] (* Harvey P. Dale, Jul 24 2011 *)


CROSSREFS

Cf. A000040, A000566, A001222, A001358, A099153.
Sequence in context: A058335 A222353 A094415 * A283246 A236283 A322610
Adjacent sequences: A114514 A114515 A114516 * A114518 A114519 A114520


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Feb 15 2006


EXTENSIONS

More terms from Harvey P. Dale, Jul 24 2011


STATUS

approved



