|
|
A000566
|
|
Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2.
(Formerly M4358 N1826)
|
|
240
|
|
|
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, 2205, 2356, 2512, 2673, 2839, 3010, 3186, 3367, 3553, 3744, 3940, 4141, 4347, 4558, 4774, 4995, 5221, 5452, 5688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Binomial transform of (0, 1, 5, 0, 0, 0, ...). Binomial transform is A084899. - Paul Barry, Jun 10 2003
Sequence starting (1, 7, 18, 34, ...) = binomial transform of (1, 6, 5, 0, 0, 0, ...). Also row sums of triangle A131896. - Gary W. Adamson, Jul 24 2007
Also the partial sums of A016861, a zero added in front; therefore a(n) = n (mod 5). - R. J. Mathar, Mar 19 2008
Comment from Ken Rosenbaum, Dec 02 2009: if you multiply the terms of this sequence by 40 and add 9, you get A017354, which is the list of squares of all whole numbers ending in 7 (this is easy to prove).
Also sequence found by reading the line from 0, in the direction 0, 7, ..., and the line from 1, in the direction 1, 18, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. These parallel lines are the semi-axes perpendicular to the main axis A195015 in the same spiral. - Omar E. Pol, Oct 14 2011
Also sequence found by reading the line from 0, in the direction 0, 7, ... and the parallel line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
The n-th heptagonal number equals the sum of the n consecutive integers starting at 2*n-1; for example, 1, 3+4, 5+6+7, 7+8+9+10, etc. In general, the n-th (2k+1)-gonal number is the sum of the n consecutive integers starting at (k-1)*n - (k-2). When k = 1 and 2, this result generates the triangular numbers, A000217, and the pentagonal numbers, A000326, respectively. - Charlie Marion, Mar 02 2022
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Leonard E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 + 4*x)/(1 - x)^3. Simon Plouffe in his 1992 dissertation.
a(n) = C(n, 1) + 5*C(n, 2). - Paul Barry, Jun 10 2003
a(n) = Sum_{k = 1..n} (4*n - 3*k). - Paul Barry, Sep 06 2005
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for a(0) = 0, a(1) = 1, a(2) = 7. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 5, with a(0) = 0 and a(1) = 1. - Mohamed Bouhamida, May 05 2010
a(5*a(n) + 11*n + 1) = a(5*a(n) + 11*n) + a(5*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = sqrt(1 - 2/sqrt(5))*Pi/3 + 5*log(5)/6 - sqrt(5)*log((1 + sqrt(5))/2)/3 = 1.32277925312238885674944226131... . See A244639. - Vaclav Kotesovec, Apr 27 2016
a(n+m) = a(n) + 5*n*m + a(m);
a(n-m) = a(n) - 5*n*m + a(m) + 3*m;
a(n) - a(m) = (5*(n + m) - 3)*(n - m)/2.
In general, let P(k,n) be the n-th k-gonal number. Then
P(k,n+m) = P(k,n) + (k - 2)*n*m + P(k,m);
P(k,n-m) = P(k,n) - (k - 2)*n*m + P(k,m) + (k - 4)*m;
P(k,n) - P(k,m) = ((k-2)*(n + m) + 4 - k)*(n - m)/2.
(End)
Product_{n>=2} (1 - 1/a(n)) = 5/7. - Amiram Eldar, Jan 21 2021
a(n) + a(n+1) = (2*n+1)^2 + n^2 - 2*n. In general, if we let P(k,n) = the n-th k-gonal number, then P(k^2-k+1,n)+ P(k^2-k+1,n+1) = ((k-1)*n+1)^2 + (k-2)*(n^2-2*n) = ((k-1)*n+1)^2 + (k-2)*A005563(n-2). When k = 2, this formula reduces to the well-known triangular number formula: T(n) + T(n+1) = (n+1)^2. - Charlie Marion, Jul 01 2021
|
|
EXAMPLE
|
G.f. = x + 7*x^2 + 18*x^3 + 34*x^4 + 55*x^5 + 81*x^6 + 112*x^7 + ... - Michael Somos, Jan 25 2019
|
|
MAPLE
|
n*(5*n-3)/2 ;
end proc:
|
|
MATHEMATICA
|
Table[n (5n - 3)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 7}, 50] (* Harvey P. Dale, Oct 13 2011 *)
Join[{0}, Accumulate[Range[1, 315, 5]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[7], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[7, Range[0, 50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)
|
|
PROG
|
(Magma) a000566:=func< n | n*(5*n-3) div 2 >; [ a000566(n): n in [0..50] ];
(PARI) a(n) = n * (5*n - 3) / 2
(Maxima) makelist(n*(5*n-3)/2, n, 0, 20); /* Martin Ettl, Dec 11 2012 */
(Haskell)
a000566 n = n * (5 * (n - 1) + 2) `div` 2
(Python 3) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 5, y + 5
(Python) [n*(5*n-3)//2 for n in range(50)] # Gennady Eremin, Mar 24 2022
|
|
CROSSREFS
|
a(n)= A093562(n+1, 2), (5, 1)-Pascal column.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|