login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130520
a(n) = Sum_{k=0..n} floor(k/5). (Partial sums of A002266.)
20
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265, 275, 286, 297, 308, 319, 330, 342, 354, 366
OFFSET
0,7
COMMENTS
Complementary with A130483 regarding triangular numbers, in that A130483(n) + 5*a(n) = n*(n+1)/2 = A000217(n).
Given a sequence b(n) defined by variables b(0) to b(5) and recursion b(n) = -(b(n-6) * a(n-2) * (b(n-4) * b(n-2)^3 - b(n-3)^3 * b(n-1)) - b(n-5) * b(n-3) * b(n-1) * (b(n-5) * b(n-2)^2 - b(n-4)^2 * b(n-1)))/(b(n-4) * (b(n-5) * b(n-3)^3 - b(n-4)^3 * b(n-2))). The denominator of b(n+1) has a factor of (b(1) * b(3)^3 - b(2)^3 * b(4))^a(n+1). For example, if b(0) = 2, b(1) = b(2) = b(3) = 1, b(4) = 1+x, b(5) = 4, then the denominator of b(n+1) is x^a(n+1). - Michael Somos, Nov 15 2023
FORMULA
a(n) = floor(n/5)*(2*n - 3 - 5*floor(n/5))/2.
a(n) = A002266(n)*(2*n - 3 - 5*A002266(n))/2.
a(n) = A002266(n)*(n -3 +A010874(n))/2.
G.f.: x^5/((1-x^5)*(1-x)^2) = x^5/( (1+x+x^2+x^3+x^4)*(1-x)^3 ).
a(n) = floor((n-1)*(n-2)/10). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-3)/10) = ceiling((n+1)*(n-4)/10) = round((n^2 - 3*n - 1)/10). - Mircea Merca, Nov 28 2010
a(n) = A008732(n-5), n > 4. - R. J. Mathar, Nov 22 2008
a(n) = a(n-5) + n - 4, n > 4. - Mircea Merca, Nov 28 2010
a(5n) = A000566(n), a(5n+1) = A005476(n), a(5n+2) = A005475(n), a(5n+3) = A147875(n), a(5n+4) = A028895(n). - Philippe Deléham, Mar 26 2013
From Amiram Eldar, Sep 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 518/45 - 2*sqrt(2*(sqrt(5)+5))*Pi/3.
Sum_{n>=5} (-1)^(n+1)/a(n) = 8*sqrt(5)*arccoth(3/sqrt(5))/3 + 92*log(2)/15 - 418/45. (End)
MAPLE
seq(floor((n-1)*(n-2)/10), n=0..70); # G. C. Greubel, Aug 31 2019
MATHEMATICA
Accumulate[Floor[Range[0, 70]/5]] (* Harvey P. Dale, May 25 2016 *)
PROG
(Magma) [Round(n*(n-3)/10): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
(PARI) a(n) = sum(k=0, n, k\5); \\ Michel Marcus, May 13 2016
(Sage) [floor((n-1)*(n-2)/10) for n in (0..70)] # G. C. Greubel, Aug 31 2019
(GAP) List([0..70], n-> Int((n-1)*(n-2)/10)); # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Jun 01 2007
STATUS
approved