OFFSET
0,3
COMMENTS
The rightmost digit in the base-4 representation of n. Also, the equivalent value of the two rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 11 2007
Periodic sequences of this type can be also calculated by a(n) = floor(q/(p^m-1)*p^n) mod p, where q is the number representing the periodic digit pattern and m is the period length. p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D. Than p := max + 1 and q := p^m*sum_{i=1..m} D(i)/p^i. Example: D = (0, 1, 2, 3), p = 4 and q = 57 for this sequence. - Hieronymus Fischer, Jan 04 2013
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65536
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
FORMULA
a(n) = (1/2)*(3-(-1)^n-2*(-1)^floor(n/2));
also a(n) = (1/2)*(3-(-1)^n-2*(-1)^((2n-1+(-1)^n)/4)));
also a(n) = (1/2)*(3-(-1)^n-2*sin(Pi/4*(2n+1+(-1)^n))).
G.f.: (3x^3+2x^2+x)/(1-x^4). - Hieronymus Fischer, May 29 2007
From Hieronymus Fischer, Jun 11 2007: (Start)
Trigonometric representation: a(n)=2^2*(sin(n*Pi/4))^2*sum{1<=k<4, k*product{1<=m<4,m<>k, (sin((n-m)*Pi/4))^2}}. Clearly, the squared terms may be replaced by their absolute values '|.|'.
Complex representation: a(n)=1/4*(1-r^n)*sum{1<=k<4, k*product{1<=m<4,m<>k, (1-r^(n-m))}} where r=exp(Pi/2*i)=i=sqrt(-1). All these formulas can be easily adapted to represent any periodic sequence.
a(n) = 6 - a(n-1) - a(n-2) - a(n-3) for n > 2. - Reinhard Zumkeller, Apr 13 2008
a(n) = 3/2 + cos((n+1)pi)/2 + sqrt(2)cos((2n+3)Pi/4) [Jaume Oliver Lafont, Dec 05 2008]
From Hieronymus Fischer, Jan 04 2013: (Start)
a(n) = floor(41/3333*10^(n+1)) mod 10.
a(n) = floor(19/85*4^(n+1)) mod 4. (End)
E.g.f.: 2*sinh(x) - sin(x) + cosh(x) - cos(x). - Stefano Spezia, Apr 20 2021
From Nicolas Bělohoubek, May 30 2024: (Start)
a(n) = (2*a(n-1)-1)*(2-a(n-2)) for n > 1.
a(n) = (2*a(n-1)^2+1)*(3-a(n-1))/3 for n > 0. (End)
MAPLE
seq(chrem( [n, n], [1, 4] ), n=0..80); # Zerinvary Lajos, Mar 25 2009
MATHEMATICA
nn=40; CoefficientList[Series[(x+2x^2+3x^3)/(1-x^4), {x, 0, nn}], x] (* Geoffrey Critzer, Jul 26 2013 *)
Table[Mod[n, 4], {n, 0, 100}] (* T. D. Noe, Jul 26 2013 *)
PadRight[{}, 120, {0, 1, 2, 3}] (* Harvey P. Dale, Mar 29 2018 *)
PROG
(PARI) a(n)=n%4 \\ Charles R Greathouse IV, Dec 05 2011
(Haskell)
a010873 n = (`mod` 4)
a010873_list = cycle [0..3] -- Reinhard Zumkeller, Jun 05 2012
(Scheme) (define (A010873 n) (modulo n 4)) ;; Antti Karttunen, Nov 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
First to third formulas re-edited for better readability by Hieronymus Fischer, Dec 05 2011
Incorrect g.f. removed by Georg Fischer, May 18 2019
STATUS
approved