The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189480 [4rn]-4[rn], where r=sqrt(5) and [ ]=floor. 7
 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 2, 3, 0, 1, 2, 3, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Suppose, in general, that a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 (or b) position sequences comprise a partition of the positive integers. LINKS Ivan Panchenko, Table of n, a(n) for n = 1..1000 MATHEMATICA r=Sqrt[5]; f[n_]:=Floor[4 n*r]-4*Floor[n*r]; t=Table[f[n], {n, 1, 320}] (*A189480*) Flatten[Position[t, 0]] (*A190813*) Flatten[Position[t, 1]] (*A190883*) Flatten[Position[t, 2]] (*A190884*) Flatten[Position[t, 3]] (*A190885*) CROSSREFS Cf. A190813, A190883, A190884, A190885. Sequence in context: A308880 A319047 A276335 * A010873 A049804 A277904 Adjacent sequences: A189477 A189478 A189479 * A189481 A189482 A189483 KEYWORD nonn AUTHOR Clark Kimberling, Apr 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:09 EDT 2024. Contains 374377 sequences. (Running on oeis4.)