login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049804
a(n) = n mod 4 + n mod 16 + ... + n mod 4^k, where 4^k <= n < 4^(k+1).
5
0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 3, 6, 9, 8, 11, 14, 17, 16, 19, 22
OFFSET
1,6
COMMENTS
From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: For b >= 2, consider the function s(n,b) = Sum_{1 <= b^j <= n} (n mod b^j) from p. 8 in Dearden et al. (2011). Then s(b*n + r, b) = b*s(n,b) + r*N(n,b) for 0 <= r <= b-1, where N(n,b) = floor(log_b(n)) + 1 is the number of digits in the base-b representation of n. As initial conditions, we have s(n,b) = 0 for 1 <= n <= b. (This is a generalization of a result by Robert Israel in A049802.)
Here b = 4 and a(n) = s(n,4).
We have N(n,2) = A070939(n), N(n,3) = A081604(n), N(n,4) = A110591(n), and N(n,5) = A110592(n).
If A_b(x) = Sum_{n >= 1} s(n,b)*x^n is the g.f. of the sequence (s(n,b): n >= 1) and the above conjecture is correct, then it can be proved that A_b(x) = b * A_b(x^b) * (1-x^b)/(1-x) + x * ((b-1)*x^b - b*x^(b-1) + 1)/((1-x)^2 * (1-x^b)) * Sum_{k >= 1} x^(b^k). (End)
LINKS
B. Dearden, J. Iiams, and J. Metzger, A Function Related to the Rumor Sequence Conjecture, J. Int. Seq. 14 (2011), #11.2.3, Example 7.
FORMULA
From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: a(4*n+r) = 4*a(n) + r*A110591(n) = 4*a(n) + r*(floor(log_4(n)) + 1) for n >= 1 and r = 0, 1, 2, 3.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 4*(1 + x + x^2 + x^3)*A(x^4) + x*(1 + 2*x + 3*x^2)/(1 - x^4) * Sum_{k >= 1} x^(4^k). (End)
MAPLE
a:= n-> add(irem(n, 4^j), j=1..ilog[4](n)):
seq(a(n), n=1..105); # Petros Hadjicostas, Dec 13 2019 (after Alois P. Heinz's program for A330358)
MATHEMATICA
Table[n * Floor@Log[4, n] - Sum[Floor[n*4^-k]*4^k, {k, Log[4, n]}], {n, 100}] (* Metin Sariyar, Dec 12 2019 *)
a[n_] := Sum[Mod[n, 4^j], {j, 1, Length[IntegerDigits[n, 4]] - 1}];
Array[a, 105] (* Jean-François Alcover, Dec 31 2021 *)
PROG
(PARI) a(n) = sum(k=1, logint(n, 4), n % 4^k); \\ Michel Marcus, Dec 12 2019
KEYWORD
nonn
STATUS
approved