The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110591 Number of digits in base-4 representation of n. 11
 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of digits in A007090(n). In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), this sequence is the repetition convolution A110594 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017 a(n) = floor(log_4(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019 MAPLE A110592 := proc(n) if n = 0 then 1; else 1+floor(log[4](n)) ; end if; end proc: seq(A110592(n), n=0..50) ; # R. J. Mathar, Sep 02 2020 MATHEMATICA a[n_] := If[n == 0, 1, Floor[Log[4, n]] + 1]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 24 2020 *) PROG (Haskell) import Data.List (unfoldr) a110591 0 = 1 a110591 n = length \$ unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) n -- Reinhard Zumkeller, Apr 22 2011 CROSSREFS Cf. A000012, A007090, A010701, A049804, A081604, A110594. Sequence in context: A211667 A001069 A156877 * A105209 A179076 A095861 Adjacent sequences: A110588 A110589 A110590 * A110592 A110593 A110594 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jul 29 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 14:16 EST 2024. Contains 370304 sequences. (Running on oeis4.)