OFFSET
0,5
COMMENTS
Number of digits in A007090(n).
In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), this sequence is the repetition convolution A110594 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_4(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019
MAPLE
A110592 := proc(n)
if n = 0 then
1;
else
1+floor(log[4](n)) ;
end if;
end proc:
seq(A110592(n), n=0..50) ; # R. J. Mathar, Sep 02 2020
MATHEMATICA
a[n_] := If[n == 0, 1, Floor[Log[4, n]] + 1];
a /@ Range[0, 100] (* Jean-François Alcover, Nov 24 2020 *)
PROG
(Haskell)
import Data.List (unfoldr)
a110591 0 = 1
a110591 n = length $
unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) n
-- Reinhard Zumkeller, Apr 22 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jul 29 2005
STATUS
approved