login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001069 Log2*(n) (version 2): take log_2 of n this many times to get a number < 2. 16
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
From Hieronymus Fischer, Apr 08 2012: (Start)
In terms of A010096 the definition could read: "Number of iterations log_2(log_2(log_2(...(n)...))) such that the result is < 2".
With the only difference in the termination criterion, the definition is essentially the same as A010096. If we change the definition to " ...number < 1" we get A010096. Therefore we get A010096 when adding 1 to each term. (End)
LINKS
FORMULA
From Hieronymus Fischer, Apr 08 2012: (Start)
a(n) = A010096(n)-1.
With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..4} 2 = 2^(2^(2^2)) = 2^16, we get:
a(E_{i=1..n} 2) = a(E_{i=1..n-1} 2) +1, for n>=1.
G.f.: g(x) = 1/(1-x)*Sum_{k >= 1} x^(E_{i=1..k} 2).
The explicit first terms of this g.f. are
g(x) = (x^2+x^4+x^16+x^65536+...)/(1-x). (End)
EXAMPLE
a(n)=1, 2, 3, 4, 5, ... for n=2, 2^2, 2^2^2, 2^2^2^2, 2^2^2^2^2, ... =2, 4, 16, 65536, 2^65536, ...
MATHEMATICA
f[n_] := Length@ NestWhileList[ Log[2, #] &, n, # >= 2 &] - 1; Array[f, 105] (* Robert G. Wilson v, Apr 19 2012 *)
CROSSREFS
Cf. A010096 (version 1), A230864 (version 3).
Sequence in context: A057467 A074594 A211667 * A156877 A110591 A105209
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)